IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v57y2023i3d10.1007_s11135-022-01497-4.html
   My bibliography  Save this article

Considering the temporal interdependence of human mobility and COVID-19 concerning Indonesia’s large-scale social distancing policies

Author

Listed:
  • Atina Ahdika

    (Universitas Islam Indonesia)

  • Arum Handini Primandari

    (Universitas Islam Indonesia)

  • Falah Novayanda Adlin

    (Universitas Islam Indonesia)

Abstract

The year 2020 has marked the beginning of a new life in which humans must struggle and adapt to coexist with a new coronavirus, known as COVID-19. Population density is one of the most significant factors affecting the speed of COVID-19’s spread, and it is closely related to human activity and movement. Therefore, many countries have implemented policies that restrict human movement to reduce the risk of transmission. This study aims to identify the temporal dependence between human mobility and virus transmission, indicated by the number of active cases, in the context of large-scale social restriction policies implemented by the Indonesian government. This analysis helps identify which government policies can significantly reduce the number of active COVID-19 cases in Indonesia. We conducted a temporal interdependency analysis using a time-varying Gaussian copula, where the parameter fluctuates throughout the observation. We use the percentage change in human mobility data and the number of active COVID-19 cases in Indonesia from March 28, 2020, to July 9, 2021. The results show that human mobility in public areas significantly influenced the number of active COVID-19 cases. Moreover, the temporal interdependencies between the two variables behaved differently according to the implementation period of large-scale social distancing policies. Among the five types of policies implemented in Indonesia, the policy that had the most significant influence on the number of active COVID-19 cases was several restrictions during the Implementation of Restrictions on Community Activities (Pelaksanaan Pembatasan Kegiatan Masyarakat/PPKM) period. We conclude that the strictness of rules restricting social activities generally affected the number of active COVID-19 cases, especially in the early days of the pandemic. Finally, the government can implement policies that are at least equivalent to the rules in PPKM if, in the future, cases of COVID-19 spike again.

Suggested Citation

  • Atina Ahdika & Arum Handini Primandari & Falah Novayanda Adlin, 2023. "Considering the temporal interdependence of human mobility and COVID-19 concerning Indonesia’s large-scale social distancing policies," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2791-2810, June.
  • Handle: RePEc:spr:qualqt:v:57:y:2023:i:3:d:10.1007_s11135-022-01497-4
    DOI: 10.1007/s11135-022-01497-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-022-01497-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-022-01497-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tarifa S. Almulhim & Igor Barahona, 2022. "Correction to: Decision support system for ranking relevant indicators for reopening strategies following COVID-19 lockdowns," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(2), pages 493-493, April.
    2. Panarello, Demetrio & Tassinari, Giorgio, 2022. "One year of COVID-19 in Italy: are containment policies enough to shape the pandemic pattern?," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    3. Christian M. Hafner & Hans Manner, 2012. "Dynamic stochastic copula models: estimation, inference and applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(2), pages 269-295, March.
    4. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    5. Manner, Hans & Alavi Fard, Farzad & Pourkhanali, Armin & Tafakori, Laleh, 2019. "Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae," Energy Economics, Elsevier, vol. 78(C), pages 143-164.
    6. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    7. Hans Manner & Olga Reznikova, 2012. "A Survey on Time-Varying Copulas: Specification, Simulations, and Application," Econometric Reviews, Taylor & Francis Journals, vol. 31(6), pages 654-687, November.
    8. Md. Mokhlesur Rahman & Jean-Claude Thill & Kamal Chandra Paul, 2020. "COVID-19 Pandemic Severity, Lockdown Regimes, and People’s Mobility: Early Evidence from 88 Countries," Sustainability, MDPI, vol. 12(21), pages 1-17, November.
    9. Dias, Alexandra & Embrechts, Paul, 2010. "Modeling exchange rate dependence dynamics at different time horizons," Journal of International Money and Finance, Elsevier, vol. 29(8), pages 1687-1705, December.
    10. Tarifa S. Almulhim & Igor Barahona, 2022. "Decision support system for ranking relevant indicators for reopening strategies following COVID-19 lockdowns," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(2), pages 463-491, April.
    11. Weiran Lin & Qiuqin He, 2021. "The Influence of Potential Infection on the Relationship between Temperature and Confirmed Cases of COVID-19 in China," Sustainability, MDPI, vol. 13(15), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    2. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    3. Janus, Paweł & Koopman, Siem Jan & Lucas, André, 2014. "Long memory dynamics for multivariate dependence under heavy tails," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 187-206.
    4. Anubha Goel & Aparna Mehra, 2019. "Analyzing Contagion Effect in Markets During Financial Crisis Using Stochastic Autoregressive Canonical Vine Model," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 921-950, March.
    5. Acar, Elif F. & Czado, Claudia & Lysy, Martin, 2019. "Flexible dynamic vine copula models for multivariate time series data," Econometrics and Statistics, Elsevier, vol. 12(C), pages 181-197.
    6. Warshaw, Evan, 2019. "Extreme dependence and risk spillovers across north american equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 237-251.
    7. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    8. Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," AMSE Working Papers 1520, Aix-Marseille School of Economics, France.
    9. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," SIRE Discussion Papers 2015-78, Scottish Institute for Research in Economics (SIRE).
    10. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    11. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
    12. Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    13. Anne Opschoor & André Lucas & István Barra & Dick van Dijk, 2021. "Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1066-1079, October.
    14. David Zimmer, 2015. "Time-Varying Correlation in Housing Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 51(1), pages 86-100, July.
    15. Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
    16. Tong, Bin & Diao, Xundi & Wu, Chongfeng, 2015. "Modeling asymmetric and dynamic dependence of overnight and daytime returns: An empirical evidence from China Banking Sector," Economic Modelling, Elsevier, vol. 51(C), pages 366-382.
    17. Kim, Jong-Min & Jung, Hojin, 2016. "Linear time-varying regression with Copula–DCC–GARCH models for volatility," Economics Letters, Elsevier, vol. 145(C), pages 262-265.
    18. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
    19. Aepli, Matthias D. & Frauendorfer, Karl & Fuess, Roland & Paraschiv, Florentina, 2015. "Multivariate Dynamic Copula Models: Parameter Estimation and Forecast Evaluation," Working Papers on Finance 1513, University of St. Gallen, School of Finance.
    20. Han, Yingwei & Li, Ping & Xia, Yong, 2017. "Dynamic robust portfolio selection with copulas," Finance Research Letters, Elsevier, vol. 21(C), pages 190-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:57:y:2023:i:3:d:10.1007_s11135-022-01497-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.