IDEAS home Printed from https://ideas.repec.org/r/spr/scient/v95y2013i1d10.1007_s11192-012-0903-6.html
   My bibliography  Save this item

Capturing new developments in an emerging technology: an updated search strategy for identifying nanotechnology research outputs

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Guan, Jiancheng & Liu, Na, 2016. "Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy," Research Policy, Elsevier, vol. 45(1), pages 97-112.
  2. Porter, Alan L. & Garner, Jon & Carley, Stephen F. & Newman, Nils C., 2019. "Emergence scoring to identify frontier R&D topics and key players," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 628-643.
  3. Stephen F. Carley & Nils C. Newman & Alan L. Porter & Jon G. Garner, 2017. "A measure of staying power: Is the persistence of emergent concepts more significantly influenced by technical domain or scale?," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 2077-2087, June.
  4. Ugo Finardi, 2018. "Public research in Nanotechnology in Piedmont (Italy)," IRCrES Working Paper 201805, CNR-IRCrES Research Institute on Sustainable Economic Growth - Moncalieri (TO) ITALY - former Institute for Economic Research on Firms and Growth - Torino (TO) ITALY.
  5. Coccia, Mario & Wang, Lili, 2015. "Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 155-169.
  6. Shapira, Philip & Gök, Abdullah & Klochikhin, Evgeny & Sensier, Marianne, 2014. "Probing “green” industry enterprises in the UK: A new identification approach," Technological Forecasting and Social Change, Elsevier, vol. 85(C), pages 93-104.
  7. Izaskun Alvarez-Meaza & Enara Zarrabeitia-Bilbao & Rosa Maria Rio-Belver & Gaizka Garechana-Anacabe, 2020. "Fuel-Cell Electric Vehicles: Plotting a Scientific and Technological Knowledge Map," Sustainability, MDPI, vol. 12(6), pages 1-25, March.
  8. Yin Li & Jan Youtie & Philip Shapira, 2015. "Why do technology firms publish scientific papers? The strategic use of science by small and midsize enterprises in nanotechnology," The Journal of Technology Transfer, Springer, vol. 40(6), pages 1016-1033, December.
  9. Sabatier, Mareva & Chollet, Barthélemy, 2017. "Is there a first mover advantage in science? Pioneering behavior and scientific production in nanotechnology," Research Policy, Elsevier, vol. 46(2), pages 522-533.
  10. Sanjay K. Arora & Yin Li & Jan Youtie & Philip Shapira, 2020. "Measuring dynamic capabilities in new ventures: exploring strategic change in US green goods manufacturing using website data," The Journal of Technology Transfer, Springer, vol. 45(5), pages 1451-1480, October.
  11. Philip Shapira & Seokbeom Kwon & Jan Youtie, 2017. "Tracking the emergence of synthetic biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1439-1469, September.
  12. Jon Borregan-Alvarado & Izaskun Alvarez-Meaza & Ernesto Cilleruelo-Carrasco & Gaizka Garechana-Anacabe, 2020. "A Bibliometric Analysis in Industry 4.0 and Advanced Manufacturing: What about the Sustainable Supply Chain?," Sustainability, MDPI, vol. 12(19), pages 1-28, September.
  13. T. Gorjiara & C. Baldock, 2014. "Nanoscience and nanotechnology research publications: a comparison between Australia and the rest of the world," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 121-148, July.
  14. Xiaoyu Liu & Alan L. Porter, 2020. "A 3-dimensional analysis for evaluating technology emergence indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 27-55, July.
  15. Yun Liu & Zhe Yan & Yijie Cheng & Xuanting Ye, 2018. "Exploring the Technological Collaboration Characteristics of the Global Integrated Circuit Manufacturing Industry," Sustainability, MDPI, vol. 10(1), pages 1-23, January.
  16. Hossain, Mokter & Simula, Henri, 2017. "Recycling the unused ideas and technologies of a large corporation into new business by start-ups," Technology in Society, Elsevier, vol. 48(C), pages 11-18.
  17. Alexander I. Terekhov, 2017. "Bibliometric spectroscopy of Russia’s nanotechnology: 2000–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1217-1242, March.
  18. Na Liu & Philip Shapira & Xiaoxu Yue, 2021. "Tracking developments in artificial intelligence research: constructing and applying a new search strategy," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3153-3192, April.
  19. Boris Forthmann & Mark A. Runco, 2020. "An Empirical Test of the Inter-Relationships between Various Bibliometric Creative Scholarship Indicators," Publications, MDPI, vol. 8(2), pages 1-16, June.
  20. Florian Kreuchauff & Vladimir Korzinov, 2017. "A patent search strategy based on machine learning for the emerging field of service robotics," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 743-772, May.
  21. Maria Karaulova & Abdullah Gök & Oliver Shackleton & Philip Shapira, 2016. "Science system path-dependencies and their influences: nanotechnology research in Russia," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 645-670, May.
  22. Appelbaum, Richard P. & Gebbie, Matthew A. & Han, Xueying & Stocking, Galen & Kay, Luciano, 2016. "Will China’s quest for indigenous innovation succeed? Some lessons from nanotechnology," Technology in Society, Elsevier, vol. 46(C), pages 149-163.
  23. Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
  24. Sujit Bhattacharya & Shilpa & Arshia Kaul, 2015. "Emerging countries assertion in the global publication landscape of science: a case study of India," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 387-411, May.
  25. Jingbei Wang & Naiding Yang, 2019. "Dynamics of collaboration network community and exploratory innovation: the moderation of knowledge networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1067-1084, November.
  26. Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
  27. Ad van den Oord & Arjen van Witteloostuijn, 2018. "A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-27, May.
  28. Guan, Jiancheng & Liu, Na, 2015. "Invention profiles and uneven growth in the field of emerging nano-energy," Energy Policy, Elsevier, vol. 76(C), pages 146-157.
  29. Na Liu & Jiancheng Guan, 2015. "Dynamic evolution of collaborative networks: evidence from nano-energy research in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 1895-1919, March.
  30. Ying Huang & Jannik Schuehle & Alan L. Porter & Jan Youtie, 2015. "A systematic method to create search strategies for emerging technologies based on the Web of Science: illustrated for ‘Big Data’," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2005-2022, December.
  31. Muñoz-Écija, Teresa & Vargas-Quesada, Benjamín & Chinchilla Rodríguez, Zaida, 2019. "Coping with methods for delineating emerging fields: Nanoscience and nanotechnology as a case study," Journal of Informetrics, Elsevier, vol. 13(4).
  32. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
  33. Patrick Wolf & Tobias Buchmann, 2021. "Analyzing development patterns in research networks and technology," Review of Evolutionary Political Economy, Springer, vol. 2(1), pages 55-81, April.
  34. Porter, Alan L. & Chiavetta, Denise & Newman, Nils C., 2020. "Measuring tech emergence: A contest," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
  35. Claudia Werker & Vladimir Korzinov & Scott Cunningham, 2019. "Formation and output of collaborations: the role of proximity in German nanotechnology," Journal of Evolutionary Economics, Springer, vol. 29(2), pages 697-719, April.
  36. Berg, S. & Wustmans, M. & Bröring, S., 2019. "Identifying first signals of emerging dominance in a technological innovation system: A novel approach based on patents," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 706-722.
  37. Kang, Inje & Yang, Jiseong & Lee, Wonjae & Seo, Eun-Yeong & Lee, Duk Hee, 2023. "Delineating development trends of nanotechnology in the semiconductor industry: Focusing on the relationship between science and technology by employing structural topic model," Technology in Society, Elsevier, vol. 74(C).
  38. Won Sang Lee & So Young Sohn, 2017. "Identifying Emerging Trends of Financial Business Method Patents," Sustainability, MDPI, vol. 9(9), pages 1-21, September.
  39. Mun, Changbae & Yoon, Sejun & Raghavan, Nagarajan & Hwang, Dongwook & Basnet, Subarna & Park, Hyunseok, 2021. "Function score-based technological trend analysis," Technovation, Elsevier, vol. 101(C).
  40. Moro, Alberto & Boelman, Elisa & Joanny, Geraldine & Garcia, Juan Lopez, 2018. "A bibliometric-based technique to identify emerging photovoltaic technologies in a comparative assessment with expert review," Renewable Energy, Elsevier, vol. 123(C), pages 407-416.
  41. Santiago Ruiz-Navas & Kumiko Miyazaki, 2018. "A complement to lexical query’s search-term selection for emerging technologies: the case of “big data”," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 141-162, October.
  42. Na Liu & Jianqi Mao & Jiancheng Guan, 2020. "Knowledge convergence and organization innovation: the moderating role of relational embeddedness," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1899-1921, December.
  43. Guiyang Zhang & Chaoying Tang, 2018. "How R&D partner diversity influences innovation performance: an empirical study in the nano-biopharmaceutical field," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1487-1512, September.
  44. Douglas Henrique Milanez & Leandro Innocentini Lopes Faria & Roniberto Morato Amaral & Daniel Rodrigo Leiva & José Angelo Rodrigues Gregolin, 2014. "Patents in nanotechnology: an analysis using macro-indicators and forecasting curves," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1097-1112, November.
  45. Kreuchauff, Florian & Korzinov, Vladimir, 2015. "A patent search strategy based on machine learning for the emerging field of service robotics," Working Paper Series in Economics 71, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
  46. Liu, Na & Guan, JianCheng, 2016. "Policy and innovation: Nanoenergy technology in the USA and China," Energy Policy, Elsevier, vol. 91(C), pages 220-232.
  47. Stephen F. Carley & Nils C. Newman & Alan L. Porter & Jon G. Garner, 2018. "An indicator of technical emergence," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 35-49, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.