IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v125y2020i3d10.1007_s11192-020-03684-2.html
   My bibliography  Save this article

Knowledge convergence and organization innovation: the moderating role of relational embeddedness

Author

Listed:
  • Na Liu

    (Shandong Technology and Business University)

  • Jianqi Mao

    (Shandong Technology and Business University)

  • Jiancheng Guan

    (University of Chinese Academy of Sciences)

Abstract

Knowledge convergence is an important means of innovation. The study aims to explore how knowledge convergence influences innovation performance at an organizational level. Furthermore, we address the moderating role of network relational embeddedness on the innovation deriving from knowledge convergence. Our empirical analyses adopting negative binomial regression models employ patent counts and patent citations from the nanotechnology field. The findings reveal that the scientific intensity in the convergence between scientific knowledge and technological knowledge has an inverted U-shaped influence on innovation performance and that this association is flattened in organizations with high network relational diversity. Also, we find that the technological scope in convergence of technological knowledge self has an inverted U-shaped influence on innovation performance and that this association is steepened in organizations with high network relational strength. Our findings add understandings of knowledge convergence on organization innovation and also have important practical and political implications.

Suggested Citation

  • Na Liu & Jianqi Mao & Jiancheng Guan, 2020. "Knowledge convergence and organization innovation: the moderating role of relational embeddedness," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1899-1921, December.
  • Handle: RePEc:spr:scient:v:125:y:2020:i:3:d:10.1007_s11192-020-03684-2
    DOI: 10.1007/s11192-020-03684-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03684-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03684-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Jiancheng & Liu, Na, 2016. "Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy," Research Policy, Elsevier, vol. 45(1), pages 97-112.
    2. Guan, Jiancheng & Liu, Na, 2015. "Invention profiles and uneven growth in the field of emerging nano-energy," Energy Policy, Elsevier, vol. 76(C), pages 146-157.
    3. Singh, Jasjit, 2008. "Distributed R&D, cross-regional knowledge integration and quality of innovative output," Research Policy, Elsevier, vol. 37(1), pages 77-96, February.
    4. Rosenberg, Nathan, 1963. "Technological Change in the Machine Tool Industry, 1840–1910," The Journal of Economic History, Cambridge University Press, vol. 23(4), pages 414-443, December.
    5. van Vianen, B. G. & Moed, H. F. & van Raan, A. F. J., 1990. "An exploration of the science base of recent technology," Research Policy, Elsevier, vol. 19(1), pages 61-81, February.
    6. Wang, Jian, 2016. "Knowledge creation in collaboration networks: Effects of tie configuration," Research Policy, Elsevier, vol. 45(1), pages 68-80.
    7. Karvonen, Matti & Kässi, Tuomo, 2013. "Patent citations as a tool for analysing the early stages of convergence," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1094-1107.
    8. Jiancheng Guan & Lanxin Pang, 2018. "Bidirectional relationship between network position and knowledge creation in Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 201-222, April.
    9. Bruno Cassiman & Reinhilde Veugelers & Pluvia Zuniga, 2008. "In search of performance effects of (in)direct industry science links," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(4), pages 611-646, August.
    10. Herbert A. Simon, 1991. "Bounded Rationality and Organizational Learning," Organization Science, INFORMS, vol. 2(1), pages 125-134, February.
    11. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    12. Hohberger, Jan, 2016. "Diffusion of science-based inventions," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 66-77.
    13. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    14. Gautam Ahuja & Riitta Katila, 2004. "Where do resources come from? The role of idiosyncratic situations," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 887-907, August.
    15. Brooks, Harvey, 1994. "The relationship between science and technology," Research Policy, Elsevier, vol. 23(5), pages 477-486, September.
    16. M. Ann McFadyen & Matthew Semadeni & Albert A. Cannella, 2009. "Value of Strong Ties to Disconnected Others: Examining Knowledge Creation in Biomedicine," Organization Science, INFORMS, vol. 20(3), pages 552-564, June.
    17. Lee, Won Sang & Han, Eun Jin & Sohn, So Young, 2015. "Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 317-329.
    18. Nerkar, Atul & Shane, Scott, 2003. "When do start-ups that exploit patented academic knowledge survive?," International Journal of Industrial Organization, Elsevier, vol. 21(9), pages 1391-1410, November.
    19. Daniel A. Levinthal & James G. March, 1993. "The myopia of learning," Strategic Management Journal, Wiley Blackwell, vol. 14(S2), pages 95-112, December.
    20. Richard F. J. Haans & Constant Pieters & Zi-Lin He, 2016. "Thinking about U: Theorizing and testing U- and inverted U-shaped relationships in strategy research," Strategic Management Journal, Wiley Blackwell, vol. 37(7), pages 1177-1195, July.
    21. Melissa A. Schilling & Corey C. Phelps, 2007. "Interfirm Collaboration Networks: The Impact of Large-Scale Network Structure on Firm Innovation," Management Science, INFORMS, vol. 53(7), pages 1113-1126, July.
    22. Chen, Jong-Rong & Kan, Kamhon & Tung, I-Hsuan, 2016. "Scientific linkages and firm productivity: Panel data evidence from Taiwanese electronics firms," Research Policy, Elsevier, vol. 45(7), pages 1449-1459.
    23. Caviggioli, Federico, 2016. "Technology fusion: Identification and analysis of the drivers of technology convergence using patent data," Technovation, Elsevier, vol. 55, pages 22-32.
    24. Sanjay K. Arora & Alan L. Porter & Jan Youtie & Philip Shapira, 2013. "Capturing new developments in an emerging technology: an updated search strategy for identifying nanotechnology research outputs," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 351-370, April.
    25. Belderbos, René & Cassiman, Bruno & Faems, Dries & Leten, Bart & Van Looy, Bart, 2014. "Co-ownership of intellectual property: Exploring the value-appropriation and value-creation implications of co-patenting with different partners," Research Policy, Elsevier, vol. 43(5), pages 841-852.
    26. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    27. Rost, Katja, 2011. "The strength of strong ties in the creation of innovation," Research Policy, Elsevier, vol. 40(4), pages 588-604, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Cheng-Jun & Yan, Lihan & Cui, Haochuan, 2023. "Unpacking the essential tension of knowledge recombination: Analyzing the impact of knowledge spanning on citation impact and disruptive innovation," Journal of Informetrics, Elsevier, vol. 17(4).
    2. Wang, Xinxin & Qin, Yong & Xu, Zeshui & Škare, Marinko, 2022. "A look at the focus shift in innovation literature due to Covid-19 pandemic," Journal of Business Research, Elsevier, vol. 145(C), pages 1-20.
    3. Ba, Zhichao & Mao, Jin & Ma, Yaxue & Liang, Zhentao, 2021. "Exploring the effect of city-level collaboration and knowledge networks on innovation: Evidence from energy conservation field," Journal of Informetrics, Elsevier, vol. 15(3).
    4. Haochuan Cui & Tiewei Li & Cheng-Jun Wang, 2023. "Climbing up the ladder of abstraction: how to span the boundaries of knowledge space in the online knowledge market?," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    5. Keye Wu & Ziyue Xie & Jia Tina Du, 2024. "Does science disrupt technology? Examining science intensity, novelty, and recency through patent-paper citations in the pharmaceutical field," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5469-5491, September.
    6. Zhang, Ningning & You, Dingyi & Tang, Le & Wen, Ke, 2023. "Knowledge path dependence, external connection, and radical inventions: Evidence from Chinese Academy of Sciences," Research Policy, Elsevier, vol. 52(4).
    7. Zhao, Shengchao & Zeng, Deming & Li, Jian & Feng, Ke & Wang, Yao, 2023. "Quantity or quality: The roles of technology and science convergence on firm innovation performance," Technovation, Elsevier, vol. 126(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Shengchao & Zeng, Deming & Li, Jian & Feng, Ke & Wang, Yao, 2023. "Quantity or quality: The roles of technology and science convergence on firm innovation performance," Technovation, Elsevier, vol. 126(C).
    2. Hohberger, Jan, 2016. "Diffusion of science-based inventions," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 66-77.
    3. Chul Lee & Gunno Park & Jina Kang, 2018. "The impact of convergence between science and technology on innovation," The Journal of Technology Transfer, Springer, vol. 43(2), pages 522-544, April.
    4. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    5. Guan, Jiancheng & Liu, Na, 2016. "Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy," Research Policy, Elsevier, vol. 45(1), pages 97-112.
    6. Zhang, Ningning & You, Dingyi & Tang, Le & Wen, Ke, 2023. "Knowledge path dependence, external connection, and radical inventions: Evidence from Chinese Academy of Sciences," Research Policy, Elsevier, vol. 52(4).
    7. Belkhouja, Mustapha & Yoon, Hyungseok (David), 2018. "How does openness influence the impact of a scholar’s research? An analysis of business scholars’ citations over their careers," Research Policy, Elsevier, vol. 47(10), pages 2037-2047.
    8. Ardito, Lorenzo & Natalicchio, Angelo & Appio, Francesco Paolo & Messeni Petruzzelli, Antonio, 2021. "The role of scientific knowledge within inventing teams and the moderating effects of team internationalization and team experience: Empirical tests into the aerospace sector," Journal of Business Research, Elsevier, vol. 128(C), pages 701-710.
    9. Slavova, Kremena & Jong, Simcha, 2021. "University alliances and firm exploratory innovation: Evidence from therapeutic product development," Technovation, Elsevier, vol. 107(C).
    10. Vittoria G. Scalera & Alessandra Perri & T. J. Hannigan, 2018. "Knowledge connectedness within and across home country borders: Spatial heterogeneity and the technological scope of firm innovations," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 49(8), pages 990-1009, October.
    11. Keupp, Marcus Matthias & Gassmann, Oliver, 2013. "Resource constraints as triggers of radical innovation: Longitudinal evidence from the manufacturing sector," Research Policy, Elsevier, vol. 42(8), pages 1457-1468.
    12. Dornbusch, Friedrich & Neuhäusler, Peter, 2015. "Composition of inventor teams and technological progress – The role of collaboration between academia and industry," Research Policy, Elsevier, vol. 44(7), pages 1360-1375.
    13. Schilling, Melissa A. & Green, Elad, 2011. "Recombinant search and breakthrough idea generation: An analysis of high impact papers in the social sciences," Research Policy, Elsevier, vol. 40(10), pages 1321-1331.
    14. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    15. Sick, Nathalie & Preschitschek, Nina & Leker, Jens & Bröring, Stefanie, 2019. "A new framework to assess industry convergence in high technology environments," Technovation, Elsevier, vol. 84, pages 48-58.
    16. Basse Mama, Houdou, 2018. "Nonlinear capital market payoffs to science-led innovation," Research Policy, Elsevier, vol. 47(6), pages 1084-1095.
    17. Hoppmann, Joern & Wu, Geng & Johnson, Jillian, 2021. "The impact of demand-pull and technology-push policies on firms’ knowledge search," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    18. Messeni Petruzzelli, Antonio & Ardito, Lorenzo & Savino, Tommaso, 2018. "Maturity of knowledge inputs and innovation value: The moderating effect of firm age and size," Journal of Business Research, Elsevier, vol. 86(C), pages 190-201.
    19. Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    20. Zakaryan, Arusyak, 2023. "Organizational knowledge networks, search and exploratory invention," Technovation, Elsevier, vol. 122(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:125:y:2020:i:3:d:10.1007_s11192-020-03684-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.