IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v100y2014i1d10.1007_s11192-014-1287-6.html
   My bibliography  Save this article

Nanoscience and nanotechnology research publications: a comparison between Australia and the rest of the world

Author

Listed:
  • T. Gorjiara

    (Macquarie University
    Royal Prince Alfred Hospital
    Chris O’Brien Lifehouse)

  • C. Baldock

    (Macquarie University)

Abstract

Nanoscience and nanotechnology are research areas of a multidisciplinary nature. Having a good knowledge of the rapidly evolving nature of these research areas is important to understand the research paths, as well as national and global developments in these areas. Accordingly, in this reported study nanoscience and nanotechnology research undertaken globally was compared with that of Australia by way of analyzing research publications. Initially, four different bibliometric Boolean-based search methodologies were used to analyze publications in the Web of Science database (Thomson Reuters ISI Web of Knowledge). These methodologies were (a) lexical query, (b) search in nanoscience and nanotechnology journals, (c) combination of lexical query and journal search and (d) search in the ten nano-journals with the highest impact factors. Based on results obtained, the third methodology was found to be the most comprehensive approach. Consequently, this search methodology was used to compare global and Australian nanoscience and nanotechnology publications for the period 1988–2000. Results demonstrated that depending on the search technique used, Australia ranks fourteenth to seventeenth internationally with a higher than world average number of nanoscience and nanotechnology publications. Over the last decade, Australia showed a relative growth rate in nanoscience and nanotechnology publications of 16 % compared to 12 % for the rest of the world. Researchers from China, the USA and the UK are from the main countries that collaborate with Australian researchers in nanoscience and nanotechnology publications.

Suggested Citation

  • T. Gorjiara & C. Baldock, 2014. "Nanoscience and nanotechnology research publications: a comparison between Australia and the rest of the world," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 121-148, July.
  • Handle: RePEc:spr:scient:v:100:y:2014:i:1:d:10.1007_s11192-014-1287-6
    DOI: 10.1007/s11192-014-1287-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-014-1287-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-014-1287-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goio Etxebarria & Mikel Gomez-Uranga & Jon Barrutia, 2012. "Tendencies in scientific output on carbon nanotubes and graphene in global centers of excellence for nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(1), pages 253-268, April.
    2. Ismael Rafols & Alan L. Porter & Loet Leydesdorff, 2010. "Science overlay maps: A new tool for research policy and library management," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(9), pages 1871-1887, September.
    3. Anne-Wil Harzing, 2013. "Document categories in the ISI Web of Knowledge: Misunderstanding the Social Sciences?," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 23-34, January.
    4. Loet Leydesdorff, 2013. "An evaluation of impacts in “Nanoscience & nanotechnology”: steps towards standards for citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 35-55, January.
    5. Loet Leydesdorff, 2008. "The delineation of nanoscience and nanotechnology in terms of journals and patents: A most recent update," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(1), pages 159-167, July.
    6. Can Huang & Ad Notten & Nico Rasters, 2011. "Nanoscience and technology publications and patents: a review of social science studies and search strategies," The Journal of Technology Transfer, Springer, vol. 36(2), pages 145-172, April.
    7. Loet Leydesdorff & Ping Zhou, 2007. "Nanotechnology as a field of science: Its delineation in terms of journals and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 693-713, March.
    8. R. S. Bajwa & K. Yaldram & S. Rafique, 2013. "A scientometric assessment of research output in nanoscience and nanotechnology: Pakistan perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 333-342, January.
    9. Anne Sigogneau, 2000. "An Analysis of Document Types Published in Journals Related to Physics: Proceeding Papers Recorded in the Science Citation Index Database," Scientometrics, Springer;Akadémiai Kiadó, vol. 47(3), pages 589-604, March.
    10. Loet Leydesdorff & Ismael Rafols, 2009. "A global map of science based on the ISI subject categories," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 348-362, February.
    11. Ehsan Mohammadi, 2012. "Knowledge mapping of the Iranian nanoscience and technology: a text mining approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(3), pages 593-608, September.
    12. Li Tang & Philip Shapira, 2011. "Regional development and interregional collaboration in the growth of nanotechnology research in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 299-315, February.
    13. Zhou, Ping & Leydesdorff, Loet, 2006. "The emergence of China as a leading nation in science," Research Policy, Elsevier, vol. 35(1), pages 83-104, February.
    14. Loet Leydesdorff & Stephen Carley & Ismael Rafols, 2013. "Global maps of science based on the new Web-of-Science categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 589-593, February.
    15. Alfonso Ávila-Robinson & Kumiko Miyazaki, 2013. "Evolutionary paths of change of emerging nanotechnological innovation systems: the case of ZnO nanostructures," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 829-849, June.
    16. Sujit Bhattacharya & Shilpa & Madhulika Bhati, 2012. "China and India: The two new players in the nanotechnology race," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(1), pages 59-87, October.
    17. Mogoutov, Andrei & Kahane, Bernard, 2007. "Data search strategy for science and technology emergence: A scalable and evolutionary query for nanotechnology tracking," Research Policy, Elsevier, vol. 36(6), pages 893-903, July.
    18. R. Karpagam & S. Gopalakrishnan & M. Natarajan & B. Ramesh Babu, 2011. "Mapping of nanoscience and nanotechnology research in India: a scientometric analysis, 1990–2009," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 501-522, November.
    19. Sanjay K. Arora & Alan L. Porter & Jan Youtie & Philip Shapira, 2013. "Capturing new developments in an emerging technology: an updated search strategy for identifying nanotechnology research outputs," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 351-370, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena M. Tur & Evangelos Bourelos & Maureen McKelvey, 2022. "The case of sleeping beauties in nanotechnology: a study of potential breakthrough inventions in emerging technologies," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(3), pages 683-708, December.
    2. Alexander I. Terekhov, 2017. "Bibliometric spectroscopy of Russia’s nanotechnology: 2000–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1217-1242, March.
    3. Ying Huang & Jannik Schuehle & Alan L. Porter & Jan Youtie, 2015. "A systematic method to create search strategies for emerging technologies based on the Web of Science: illustrated for ‘Big Data’," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2005-2022, December.
    4. A. I. M. Jakaria Rahman & Raf Guns & Loet Leydesdorff & Tim C. E. Engels, 2016. "Measuring the match between evaluators and evaluees: cognitive distances between panel members and research groups at the journal level," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1639-1663, December.
    5. Liu, Na & Guan, JianCheng, 2016. "Policy and innovation: Nanoenergy technology in the USA and China," Energy Policy, Elsevier, vol. 91(C), pages 220-232.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coccia, Mario & Wang, Lili, 2015. "Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 155-169.
    2. Patrick Herron & Aashish Mehta & Cong Cao & Timothy Lenoir, 2016. "Research diversification and impact: the case of national nanoscience development," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 629-659, November.
    3. Weishu Liu & Mengdi Gu & Guangyuan Hu & Chao Li & Huchang Liao & Li Tang & Philip Shapira, 2014. "Profile of developments in biomass-based bioenergy research: a 20-year perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(2), pages 507-521, May.
    4. Sanjay K. Arora & Alan L. Porter & Jan Youtie & Philip Shapira, 2013. "Capturing new developments in an emerging technology: an updated search strategy for identifying nanotechnology research outputs," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 351-370, April.
    5. Muñoz-Écija, Teresa & Vargas-Quesada, Benjamín & Chinchilla Rodríguez, Zaida, 2019. "Coping with methods for delineating emerging fields: Nanoscience and nanotechnology as a case study," Journal of Informetrics, Elsevier, vol. 13(4).
    6. Kang, Inje & Yang, Jiseong & Lee, Wonjae & Seo, Eun-Yeong & Lee, Duk Hee, 2023. "Delineating development trends of nanotechnology in the semiconductor industry: Focusing on the relationship between science and technology by employing structural topic model," Technology in Society, Elsevier, vol. 74(C).
    7. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    8. Elena M. Tur & Evangelos Bourelos & Maureen McKelvey, 2022. "The case of sleeping beauties in nanotechnology: a study of potential breakthrough inventions in emerging technologies," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(3), pages 683-708, December.
    9. Karmen Stopar & Damjana Drobne & Klemen Eler & Tomaz Bartol, 2016. "Citation analysis and mapping of nanoscience and nanotechnology: identifying the scope and interdisciplinarity of research," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 563-581, February.
    10. Ying Huang & Jannik Schuehle & Alan L. Porter & Jan Youtie, 2015. "A systematic method to create search strategies for emerging technologies based on the Web of Science: illustrated for ‘Big Data’," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2005-2022, December.
    11. Sabatier, Mareva & Chollet, Barthélemy, 2017. "Is there a first mover advantage in science? Pioneering behavior and scientific production in nanotechnology," Research Policy, Elsevier, vol. 46(2), pages 522-533.
    12. Philip Shapira & Seokbeom Kwon & Jan Youtie, 2017. "Tracking the emergence of synthetic biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1439-1469, September.
    13. Li Tang & Philip Shapira, 2011. "China–US scientific collaboration in nanotechnology: patterns and dynamics," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 1-16, July.
    14. Jielan Ding & Per Ahlgren & Liying Yang & Ting Yue, 2018. "Disciplinary structures in Nature, Science and PNAS: journal and country levels," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1817-1852, September.
    15. Nieminen, Paavo & Pölönen, Ilkka & Sipola, Tuomo, 2013. "Research literature clustering using diffusion maps," Journal of Informetrics, Elsevier, vol. 7(4), pages 874-886.
    16. Yuxian Liu & Ewelina Biskup & Yueqian Wang & Fengfeng Cai & Xiaoyan Zhang, 2020. "A new territory and its pioneer: opening up a dominant research stream for a translational research area," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1213-1228, November.
    17. Loet Leydesdorff & Lutz Bornmann, 2012. "Mapping (USPTO) patent data using overlays to Google Maps," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(7), pages 1442-1458, July.
    18. Rahman, A.I.M. Jakaria & Guns, Raf & Rousseau, Ronald & Engels, Tim C.E., 2015. "Is the expertise of evaluation panels congruent with the research interests of the research groups: A quantitative approach based on barycenters," Journal of Informetrics, Elsevier, vol. 9(4), pages 704-721.
    19. Aashish Mehta & Patrick Herron & Yasuyuki Motoyama & Richard Appelbaum & Timothy Lenoir, 2012. "Globalization and de-globalization in nanotechnology research: the role of China," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 439-458, November.
    20. Na Liu & Philip Shapira & Xiaoxu Yue, 2021. "Tracking developments in artificial intelligence research: constructing and applying a new search strategy," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3153-3192, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:100:y:2014:i:1:d:10.1007_s11192-014-1287-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.