IDEAS home Printed from https://ideas.repec.org/r/spr/psycho/v51y1986i2p285-311.html
   My bibliography  Save this item

Principal components analysis of sampled functions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. repec:hum:wpaper:sfb649dp2016-033 is not listed on IDEAS
  2. Christian Genest & Johanna G. Nešlehová, 2014. "A Conversation with James O. Ramsay," International Statistical Review, International Statistical Institute, vol. 82(2), pages 161-183, August.
  3. Jing Zhao & Sanying Feng & Yuping Hu, 2022. "Two-Sample Hypothesis Test for Functional Data," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
  4. Mante, Claude & Yao, Anne-Francoise & Degiovanni, Claude, 2007. "Principal component analysis of measures, with special emphasis on grain-size curves," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4969-4983, June.
  5. Bücher, Axel & Dette, Holger & Wieczorek, Gabriele, 2011. "Testing model assumptions in functional regression models," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1472-1488, November.
  6. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
  7. Yangyi Xu & Inyoung Kim & Patrick Schaumont, 2014. "Adaptive Bayes sum test for the equality of two nonparametric functions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2639-2657, December.
  8. Christoph Hellmayr & Alan E. Gelfand, 2021. "A Partition Dirichlet Process Model for Functional Data Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 30-65, May.
  9. Michio Yamamoto, 2012. "Clustering of functional data in a low-dimensional subspace," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(3), pages 219-247, October.
  10. Christian Acal & Ana M. Aguilera & Manuel Escabias, 2020. "New Modeling Approaches Based on Varimax Rotation of Functional Principal Components," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
  11. Jan Leeuw, 1988. "Multivariate analysis with linearizable regressions," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 437-454, December.
  12. Zhang, Ruizhi & Wang, Jian & Mei, Yajun, 2017. "Search for evergreens in science: A functional data analysis," Journal of Informetrics, Elsevier, vol. 11(3), pages 629-644.
  13. Cederbaum, Jona & Scheipl, Fabian & Greven, Sonja, 2018. "Fast symmetric additive covariance smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 25-41.
  14. Fang Yao & Hans-Georg Müller & Andrew J. Clifford & Steven R. Dueker & Jennifer Follett & Yumei Lin & Bruce A. Buchholz & John S. Vogel, 2003. "Shrinkage Estimation for Functional Principal Component Scores with Application to the Population Kinetics of Plasma Folate," Biometrics, The International Biometric Society, vol. 59(3), pages 676-685, September.
  15. N. Locantore & J. Marron & D. Simpson & N. Tripoli & J. Zhang & K. Cohen & Graciela Boente & Ricardo Fraiman & Babette Brumback & Christophe Croux & Jianqing Fan & Alois Kneip & John Marden & Daniel P, 1999. "Robust principal component analysis for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 1-73, June.
  16. Lakraj, Gamage Pemantha & Ruymgaart, Frits, 2017. "Some asymptotic theory for Silverman’s smoothed functional principal components in an abstract Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 122-132.
  17. Nerini, David & Monestiez, Pascal & Manté, Claude, 2010. "Cokriging for spatial functional data," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 409-418, February.
  18. Hans-Georg Müller & Wenjing Yang, 2010. "Dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 1-29, May.
  19. Yoshio Takane & Tadashi Shibayama, 1991. "Principal component analysis with external information on both subjects and variables," Psychometrika, Springer;The Psychometric Society, vol. 56(1), pages 97-120, March.
  20. Cindy Xin Feng & Jiguo Cao & Leah Bendell, 2011. "Exploring Spatial and Temporal Variations of Cadmium Concentrations in Pacific Oysters from British Columbia," Biometrics, The International Biometric Society, vol. 67(3), pages 1142-1152, September.
  21. Grith, Maria & Härdle, Wolfgang Karl & Kneip, Alois & Wagner, Heiko, 2016. "Functional principal component analysis for derivatives of multivariate curves," SFB 649 Discussion Papers 2016-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  22. Shin, Yei Eun & Zhou, Lan & Ding, Yu, 2022. "Joint estimation of monotone curves via functional principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
  23. Yue Wang & Joseph G. Ibrahim & Hongtu Zhu, 2020. "Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study," Biometrics, The International Biometric Society, vol. 76(4), pages 1109-1119, December.
  24. Hlubinka, Daniel & Prchal, Lubos, 2007. "Changes in atmospheric radiation from the statistical point of view," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4926-4941, June.
  25. Wesley K. Thompson & Ori Rosen, 2008. "A Bayesian Model for Sparse Functional Data," Biometrics, The International Biometric Society, vol. 64(1), pages 54-63, March.
  26. Amato, U. & Antoniadis, A. & De Feis, I., 2006. "Dimension reduction in functional regression with applications," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2422-2446, May.
  27. Panaretos, Victor M. & Tavakoli, Shahin, 2013. "Cramér–Karhunen–Loève representation and harmonic principal component analysis of functional time series," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2779-2807.
  28. Huang, Su-Yun & Lu, Henry Horng-Shing, 2001. "Extended Gauss-Markov Theorem for Nonparametric Mixed-Effects Models," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 249-266, February.
  29. Segovia-Gonzalez, M.M. & Guerrero, F.M. & Herranz, P., 2009. "Explaining functional principal component analysis to actuarial science with an example on vehicle insurance," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 278-285, October.
  30. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
  31. Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2010. "Inference under functional proportional and common principal component models," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 464-475, February.
  32. Tomasz Górecki & Mirosław Krzyśko & Łukasz Waszak & Waldemar Wołyński, 2018. "Selected statistical methods of data analysis for multivariate functional data," Statistical Papers, Springer, vol. 59(1), pages 153-182, March.
  33. van Delft, Anne & Eichler, Michael, 2017. "Locally Stationary Functional Time Series," LIDAM Discussion Papers ISBA 2017023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  34. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
  35. Jakub Poręba & Jerzy Baranowski, 2022. "Functional Logistic Regression for Motor Fault Classification Using Acoustic Data in Frequency Domain," Energies, MDPI, vol. 15(15), pages 1-12, July.
  36. repec:eca:wpaper:2013/131191 is not listed on IDEAS
  37. Boente, Graciela & Fraiman, Ricardo, 2000. "Kernel-based functional principal components," Statistics & Probability Letters, Elsevier, vol. 48(4), pages 335-345, July.
  38. Robert T. Krafty & Haoyi Fu & Jessica L. Graves & Scott A. Bruce & Martica H. Hall & Stephen F. Smagula, 2019. "Measuring Variability in Rest-Activity Rhythms from Actigraphy with Application to Characterizing Symptoms of Depression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 314-333, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.