IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2007i10p4969-4983.html
   My bibliography  Save this article

Principal component analysis of measures, with special emphasis on grain-size curves

Author

Listed:
  • Mante, Claude
  • Yao, Anne-Francoise
  • Degiovanni, Claude

Abstract

No abstract is available for this item.

Suggested Citation

  • Mante, Claude & Yao, Anne-Francoise & Degiovanni, Claude, 2007. "Principal component analysis of measures, with special emphasis on grain-size curves," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4969-4983, June.
  • Handle: RePEc:eee:csdana:v:51:y:2007:i:10:p:4969-4983
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(06)00263-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philippe Besse & J. Ramsay, 1986. "Principal components analysis of sampled functions," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 285-311, June.
    2. Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
    3. Kneip A. & Utikal K. J, 2001. "Inference for Density Families Using Functional Principal Component Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 519-542, June.
    4. C. Mante & J. P. Durbec & J. C. Dauvin, 2005. "A functional data-analytic approach to the classification of species according to their spatial dispersion. Application to a marine macrobenthic community from the Bay of Morlaix (Western English Chan," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(8), pages 831-840.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Juhyun & Gasser, Theo & Rousson, Valentin, 2009. "Structural components in functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3452-3465, July.
    2. Berrendero, J.R. & Justel, A. & Svarc, M., 2011. "Principal components for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2619-2634, September.
    3. van der Linde, Angelika, 2008. "Variational Bayesian functional PCA," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 517-533, December.
    4. Anthony Hayter, 2014. "Identifying common normal distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 135-152, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    2. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    3. Grith, Maria & Härdle, Wolfgang Karl & Kneip, Alois & Wagner, Heiko, 2016. "Functional principal component analysis for derivatives of multivariate curves," SFB 649 Discussion Papers 2016-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Maria Grith & Wolfgang K. Härdle & Alois Kneip & Heiko Wagner, 2016. "Functional Principal Component Analysis for Derivatives of Multivariate Curves," SFB 649 Discussion Papers SFB649DP2016-033, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. Zhang, Zhen & Müller, Hans-Georg, 2011. "Functional density synchronization," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2234-2249, July.
    6. Bücher, Axel & Dette, Holger & Wieczorek, Gabriele, 2011. "Testing model assumptions in functional regression models," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1472-1488, November.
    7. Hlubinka, Daniel & Prchal, Lubos, 2007. "Changes in atmospheric radiation from the statistical point of view," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4926-4941, June.
    8. repec:eca:wpaper:2013/131191 is not listed on IDEAS
    9. Kim Huynh & David Jacho-Chávez & Robert Petrunia & Marcel Voia, 2015. "A nonparametric analysis of firm size, leverage and labour productivity distribution dynamics," Empirical Economics, Springer, vol. 48(1), pages 337-360, February.
    10. Hongxiao Zhu & Philip J. Brown & Jeffrey S. Morris, 2012. "Robust Classification of Functional and Quantitative Image Data Using Functional Mixed Models," Biometrics, The International Biometric Society, vol. 68(4), pages 1260-1268, December.
    11. Mojirsheibani, Majid & Shaw, Crystal, 2018. "Classification with incomplete functional covariates," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 40-46.
    12. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
    13. Michal Benko & Wolfgang Härdle & Alois Kneip, 2006. "Common Functional Principal Components," SFB 649 Discussion Papers SFB649DP2006-010, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    14. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    15. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    16. Fang Yao & Hans-Georg Müller & Andrew J. Clifford & Steven R. Dueker & Jennifer Follett & Yumei Lin & Bruce A. Buchholz & John S. Vogel, 2003. "Shrinkage Estimation for Functional Principal Component Scores with Application to the Population Kinetics of Plasma Folate," Biometrics, The International Biometric Society, vol. 59(3), pages 676-685, September.
    17. Segovia-Gonzalez, M.M. & Guerrero, F.M. & Herranz, P., 2009. "Explaining functional principal component analysis to actuarial science with an example on vehicle insurance," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 278-285, October.
    18. Gustavo Canavire-Bacarreza & Luis C. Carvajal-Osorio, 2020. "Two Stories of Wage Dynamics in Latin America: Different Policies, Different Outcomes," Journal of Labor Research, Springer, vol. 41(1), pages 128-168, June.
    19. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    20. Michal Benko & Alois Kneip, 2005. "Common functional component modelling," SFB 649 Discussion Papers SFB649DP2005-016, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    21. Casado, David, 2009. "Classification of functional data: a weighted distance approach," DES - Working Papers. Statistics and Econometrics. WS ws093915, Universidad Carlos III de Madrid. Departamento de Estadística.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2007:i:10:p:4969-4983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.