IDEAS home Printed from https://ideas.repec.org/r/spr/coopap/v60y2015i3p545-557.html
   My bibliography  Save this item

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. El Houcine Bergou & Youssef Diouane & Serge Gratton, 2018. "A Line-Search Algorithm Inspired by the Adaptive Cubic Regularization Framework and Complexity Analysis," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 885-913, September.
  2. M. Ahmadvand & M. Esmaeilbeigi & A. Kamandi & F. M. Yaghoobi, 2019. "A novel hybrid trust region algorithm based on nonmonotone and LOOCV techniques," Computational Optimization and Applications, Springer, vol. 72(2), pages 499-524, March.
  3. S. Gratton & Ph. L. Toint, 2020. "A note on solving nonlinear optimization problems in variable precision," Computational Optimization and Applications, Springer, vol. 76(3), pages 917-933, July.
  4. Charles Audet & Kwassi Joseph Dzahini & Michael Kokkolaras & Sébastien Le Digabel, 2021. "Stochastic mesh adaptive direct search for blackbox optimization using probabilistic estimates," Computational Optimization and Applications, Springer, vol. 79(1), pages 1-34, May.
  5. Renato Leone & Giovanni Fasano & Massimo Roma & Yaroslav D. Sergeyev, 2020. "Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 554-589, August.
  6. E. G. Birgin & J. L. Gardenghi & J. M. Martínez & S. A. Santos, 2021. "On the solution of linearly constrained optimization problems by means of barrier algorithms," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 417-441, July.
  7. Mehiddin Al-Baali & Andrea Caliciotti & Giovanni Fasano & Massimo Roma, 2017. "Exploiting damped techniques for nonlinear conjugate gradient methods," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 501-522, December.
  8. Jianjun Liu & Xiangmin Xu & Xuehui Cui, 2018. "An accelerated nonmonotone trust region method with adaptive trust region for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 69(1), pages 77-97, January.
  9. Nicolas Boutet & Rob Haelterman & Joris Degroote, 2021. "Secant Update generalized version of PSB: a new approach," Computational Optimization and Applications, Springer, vol. 78(3), pages 953-982, April.
  10. Yutao Zheng & Bing Zheng, 2017. "Two New Dai–Liao-Type Conjugate Gradient Methods for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 502-509, November.
  11. Renke Kuhlmann, 2019. "Learning to steer nonlinear interior-point methods," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 381-419, December.
  12. Giovanni Fasano & Massimo Roma, 2016. "A novel class of approximate inverse preconditioners for large positive definite linear systems in optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 399-429, November.
  13. Jae Hwa Lee & Yoon Mo Jung & Ya-xiang Yuan & Sangwoon Yun, 2019. "A subspace SQP method for equality constrained optimization," Computational Optimization and Applications, Springer, vol. 74(1), pages 177-194, September.
  14. Rujun Jiang & Man-Chung Yue & Zhishuo Zhou, 2021. "An accelerated first-order method with complexity analysis for solving cubic regularization subproblems," Computational Optimization and Applications, Springer, vol. 79(2), pages 471-506, June.
  15. Charles Audet & Andrew R. Conn & Sébastien Le Digabel & Mathilde Peyrega, 2018. "A progressive barrier derivative-free trust-region algorithm for constrained optimization," Computational Optimization and Applications, Springer, vol. 71(2), pages 307-329, November.
  16. Andrea Cristofari & Gianni Di Pillo & Giampaolo Liuzzi & Stefano Lucidi, 2022. "An Augmented Lagrangian Method Exploiting an Active-Set Strategy and Second-Order Information," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 300-323, June.
  17. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
  18. David Ek & Anders Forsgren, 2021. "Exact linesearch limited-memory quasi-Newton methods for minimizing a quadratic function," Computational Optimization and Applications, Springer, vol. 79(3), pages 789-816, July.
  19. Caliciotti, Andrea & Fasano, Giovanni & Roma, Massimo, 2018. "Preconditioned Nonlinear Conjugate Gradient methods based on a modified secant equation," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 196-214.
  20. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2017. "A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 369-401, February.
  21. David Ek & Anders Forsgren, 2021. "Approximate solution of system of equations arising in interior-point methods for bound-constrained optimization," Computational Optimization and Applications, Springer, vol. 79(1), pages 155-191, May.
  22. Andrea Caliciotti & Giovanni Fasano & Florian Potra & Massimo Roma, 2020. "Issues on the use of a modified Bunch and Kaufman decomposition for large scale Newton’s equation," Computational Optimization and Applications, Springer, vol. 77(3), pages 627-651, December.
  23. Dominique Orban & Abel Soares Siqueira, 2020. "A regularization method for constrained nonlinear least squares," Computational Optimization and Applications, Springer, vol. 76(3), pages 961-989, July.
  24. Donghui Li & Xiaozhou Wang & Jiajian Huang, 2022. "Diagonal BFGS updates and applications to the limited memory BFGS method," Computational Optimization and Applications, Springer, vol. 81(3), pages 829-856, April.
  25. S. Gratton & C. W. Royer & L. N. Vicente & Z. Zhang, 2019. "Direct search based on probabilistic feasible descent for bound and linearly constrained problems," Computational Optimization and Applications, Springer, vol. 72(3), pages 525-559, April.
  26. Brian Irwin & Eldad Haber, 2023. "Secant penalized BFGS: a noise robust quasi-Newton method via penalizing the secant condition," Computational Optimization and Applications, Springer, vol. 84(3), pages 651-702, April.
  27. Paul Armand & Isaï Lankoandé, 2017. "An inexact proximal regularization method for unconstrained optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(1), pages 43-59, February.
  28. Nicholas I. M. Gould & Daniel P. Robinson, 2017. "A dual gradient-projection method for large-scale strictly convex quadratic problems," Computational Optimization and Applications, Springer, vol. 67(1), pages 1-38, May.
  29. Yonggang Pei & Shaofang Song & Detong Zhu, 2023. "A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization," Computational Optimization and Applications, Springer, vol. 84(3), pages 1005-1033, April.
  30. Matteo Lapucci & Alessio Sortino, 2024. "On the Convergence of Inexact Alternate Minimization in Problems with $$\ell _0$$ ℓ 0 Penalties," SN Operations Research Forum, Springer, vol. 5(2), pages 1-11, June.
  31. Sven Leyffer & Charlie Vanaret, 2020. "An augmented Lagrangian filter method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(2), pages 343-376, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.