IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v77y2020i3d10.1007_s10589-020-00225-8.html
   My bibliography  Save this article

Issues on the use of a modified Bunch and Kaufman decomposition for large scale Newton’s equation

Author

Listed:
  • Andrea Caliciotti

    (Università di Roma)

  • Giovanni Fasano

    (University Ca’ Foscari of Venice)

  • Florian Potra

    (University of Maryland, Baltimore County)

  • Massimo Roma

    (Università di Roma)

Abstract

In this work, we deal with Truncated Newton methods for solving large scale (possibly nonconvex) unconstrained optimization problems. In particular, we consider the use of a modified Bunch and Kaufman factorization for solving the Newton equation, at each (outer) iteration of the method. The Bunch and Kaufman factorization of a tridiagonal matrix is an effective and stable matrix decomposition, which is well exploited in the widely adopted SYMMBK (Bunch and Kaufman in Math Comput 31:163–179, 1977; Chandra in Conjugate gradient methods for partial differential equations, vol 129, 1978; Conn et al. in Trust-region methods. MPS-SIAM series on optimization, Society for Industrial Mathematics, Philadelphia, 2000; HSL, A collection of Fortran codes for large scale scientific computation, http://www.hsl.rl.ac.uk/ ; Marcia in Appl Numer Math 58:449–458, 2008) routine. It can be used to provide conjugate directions, both in the case of $$1\times 1$$ 1 × 1 and $$2\times 2$$ 2 × 2 pivoting steps. The main drawback is that the resulting solution of Newton’s equation might not be gradient–related, in the case the objective function is nonconvex. Here we first focus on some theoretical properties, in order to ensure that at each iteration of the Truncated Newton method, the search direction obtained by using an adapted Bunch and Kaufman factorization is gradient–related. This allows to perform a standard Armijo-type linesearch procedure, using a bounded descent direction. Furthermore, the results of an extended numerical experience using large scale CUTEst problems is reported, showing the reliability and the efficiency of the proposed approach, both on convex and nonconvex problems.

Suggested Citation

  • Andrea Caliciotti & Giovanni Fasano & Florian Potra & Massimo Roma, 2020. "Issues on the use of a modified Bunch and Kaufman decomposition for large scale Newton’s equation," Computational Optimization and Applications, Springer, vol. 77(3), pages 627-651, December.
  • Handle: RePEc:spr:coopap:v:77:y:2020:i:3:d:10.1007_s10589-020-00225-8
    DOI: 10.1007/s10589-020-00225-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00225-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00225-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Fasano, 2007. "Lanczos Conjugate-Gradient Method and Pseudoinverse Computation on Indefinite and Singular Systems," Journal of Optimization Theory and Applications, Springer, vol. 132(2), pages 267-285, February.
    2. Renato De Leone & Giovanni Fasano & Yaroslav D. Sergeyev, 2018. "Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming," Computational Optimization and Applications, Springer, vol. 71(1), pages 73-93, September.
    3. Nicholas Gould & Dominique Orban & Philippe Toint, 2015. "CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization," Computational Optimization and Applications, Springer, vol. 60(3), pages 545-557, April.
    4. G. Fasano, 2005. "Planar Conjugate Gradient Algorithm for Large-Scale Unconstrained Optimization, Part 2: Application," Journal of Optimization Theory and Applications, Springer, vol. 125(3), pages 543-558, June.
    5. Giovanni Fasano & Massimo Roma, 2013. "Preconditioning Newton–Krylov methods in nonconvex large scale optimization," Computational Optimization and Applications, Springer, vol. 56(2), pages 253-290, October.
    6. Renato Leone & Giovanni Fasano & Massimo Roma & Yaroslav D. Sergeyev, 2020. "Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 554-589, August.
    7. G. Fasano, 2005. "Planar Conjugate Gradient Algorithm for Large-Scale Unconstrained Optimization, Part 1: Theory," Journal of Optimization Theory and Applications, Springer, vol. 125(3), pages 523-541, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Fasano, 2015. "A Framework of Conjugate Direction Methods for Symmetric Linear Systems in Optimization," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 883-914, March.
    2. Renato Leone & Giovanni Fasano & Massimo Roma & Yaroslav D. Sergeyev, 2020. "Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 554-589, August.
    3. Giovanni Fasano & Massimo Roma, 2016. "A novel class of approximate inverse preconditioners for large positive definite linear systems in optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 399-429, November.
    4. Giovanni Fasano & Raffaele Pesenti, 2017. "Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 764-794, December.
    5. Giovanni Fasano & Massimo Roma, 2013. "Preconditioning Newton–Krylov methods in nonconvex large scale optimization," Computational Optimization and Applications, Springer, vol. 56(2), pages 253-290, October.
    6. Renato De Leone & Giovanni Fasano & Yaroslav D. Sergeyev, 2018. "Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming," Computational Optimization and Applications, Springer, vol. 71(1), pages 73-93, September.
    7. Giovanni Fasano & Massimo Roma, 2011. "A Class of Preconditioners for Large Indefinite Linear Systems, as by-product of Krylov subspace Methods: Part I," Working Papers 4, Venice School of Management - Department of Management, Università Ca' Foscari Venezia.
    8. Mehiddin Al-Baali & Andrea Caliciotti & Giovanni Fasano & Massimo Roma, 2017. "Exploiting damped techniques for nonlinear conjugate gradient methods," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 501-522, December.
    9. Caliciotti, Andrea & Fasano, Giovanni & Roma, Massimo, 2018. "Preconditioned Nonlinear Conjugate Gradient methods based on a modified secant equation," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 196-214.
    10. G. Fasano, 2007. "Lanczos Conjugate-Gradient Method and Pseudoinverse Computation on Indefinite and Singular Systems," Journal of Optimization Theory and Applications, Springer, vol. 132(2), pages 267-285, February.
    11. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
    12. Brian Irwin & Eldad Haber, 2023. "Secant penalized BFGS: a noise robust quasi-Newton method via penalizing the secant condition," Computational Optimization and Applications, Springer, vol. 84(3), pages 651-702, April.
    13. Matteo Lapucci & Alessio Sortino, 2024. "On the Convergence of Inexact Alternate Minimization in Problems with $$\ell _0$$ ℓ 0 Penalties," SN Operations Research Forum, Springer, vol. 5(2), pages 1-11, June.
    14. S. Gratton & Ph. L. Toint, 2020. "A note on solving nonlinear optimization problems in variable precision," Computational Optimization and Applications, Springer, vol. 76(3), pages 917-933, July.
    15. Yutao Zheng & Bing Zheng, 2017. "Two New Dai–Liao-Type Conjugate Gradient Methods for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 502-509, November.
    16. Yonggang Pei & Shaofang Song & Detong Zhu, 2023. "A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization," Computational Optimization and Applications, Springer, vol. 84(3), pages 1005-1033, April.
    17. M. Ahmadvand & M. Esmaeilbeigi & A. Kamandi & F. M. Yaghoobi, 2019. "A novel hybrid trust region algorithm based on nonmonotone and LOOCV techniques," Computational Optimization and Applications, Springer, vol. 72(2), pages 499-524, March.
    18. Nicolas Boutet & Rob Haelterman & Joris Degroote, 2021. "Secant Update generalized version of PSB: a new approach," Computational Optimization and Applications, Springer, vol. 78(3), pages 953-982, April.
    19. Falcone, Alberto & Garro, Alfredo & Mukhametzhanov, Marat S. & Sergeyev, Yaroslav D., 2021. "A Simulink-based software solution using the Infinity Computer methodology for higher order differentiation," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    20. E. G. Birgin & J. L. Gardenghi & J. M. Martínez & S. A. Santos, 2021. "On the solution of linearly constrained optimization problems by means of barrier algorithms," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 417-441, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:77:y:2020:i:3:d:10.1007_s10589-020-00225-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.