Issues on the use of a modified Bunch and Kaufman decomposition for large scale Newton’s equation
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-020-00225-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- G. Fasano, 2007. "Lanczos Conjugate-Gradient Method and Pseudoinverse Computation on Indefinite and Singular Systems," Journal of Optimization Theory and Applications, Springer, vol. 132(2), pages 267-285, February.
- Renato De Leone & Giovanni Fasano & Yaroslav D. Sergeyev, 2018. "Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming," Computational Optimization and Applications, Springer, vol. 71(1), pages 73-93, September.
- Nicholas Gould & Dominique Orban & Philippe Toint, 2015. "CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization," Computational Optimization and Applications, Springer, vol. 60(3), pages 545-557, April.
- G. Fasano, 2005. "Planar Conjugate Gradient Algorithm for Large-Scale Unconstrained Optimization, Part 2: Application," Journal of Optimization Theory and Applications, Springer, vol. 125(3), pages 543-558, June.
- Giovanni Fasano & Massimo Roma, 2013. "Preconditioning Newton–Krylov methods in nonconvex large scale optimization," Computational Optimization and Applications, Springer, vol. 56(2), pages 253-290, October.
- Renato Leone & Giovanni Fasano & Massimo Roma & Yaroslav D. Sergeyev, 2020. "Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 554-589, August.
- G. Fasano, 2005. "Planar Conjugate Gradient Algorithm for Large-Scale Unconstrained Optimization, Part 1: Theory," Journal of Optimization Theory and Applications, Springer, vol. 125(3), pages 523-541, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giovanni Fasano, 2015.
"A Framework of Conjugate Direction Methods for Symmetric Linear Systems in Optimization,"
Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 883-914, March.
- Giovanni Fasano, 2013. "A framework of conjugate direction methods for symmetric linear systems in optimization," Working Papers 31, Venice School of Management - Department of Management, Università Ca' Foscari Venezia.
- Giovanni Fasano, 2014. "A Framework of Conjugate Direction Methods for Symmetric Linear Systems in Optimization," Papers 1408.6043, arXiv.org.
- Renato Leone & Giovanni Fasano & Massimo Roma & Yaroslav D. Sergeyev, 2020. "Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 554-589, August.
- Giovanni Fasano & Massimo Roma, 2016. "A novel class of approximate inverse preconditioners for large positive definite linear systems in optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 399-429, November.
- Giovanni Fasano & Raffaele Pesenti, 2017. "Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 764-794, December.
- Giovanni Fasano & Massimo Roma, 2013. "Preconditioning Newton–Krylov methods in nonconvex large scale optimization," Computational Optimization and Applications, Springer, vol. 56(2), pages 253-290, October.
- Renato De Leone & Giovanni Fasano & Yaroslav D. Sergeyev, 2018. "Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming," Computational Optimization and Applications, Springer, vol. 71(1), pages 73-93, September.
- Giovanni Fasano & Massimo Roma, 2011.
"A Class of Preconditioners for Large Indefinite Linear Systems, as by-product of Krylov subspace Methods: Part I,"
Working Papers
4, Venice School of Management - Department of Management, Università Ca' Foscari Venezia.
- Giovanni Fasano & Massimo Roma, 2011. "A Class of Preconditioners for Large Indefinite Linear Systems, as by-product of Krylov subspace Methods: Part II," Working Papers 5, Venice School of Management - Department of Management, Università Ca' Foscari Venezia.
- Mehiddin Al-Baali & Andrea Caliciotti & Giovanni Fasano & Massimo Roma, 2017.
"Exploiting damped techniques for nonlinear conjugate gradient methods,"
Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 501-522, December.
- Mehiddin Al-Baali & Andrea Caliciotti & Giovanni Fasano & Massimo Roma, 2017. "Exploiting damped techniques for nonlinear conjugate gradient methods," DIAG Technical Reports 2017-05, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
- Caliciotti, Andrea & Fasano, Giovanni & Roma, Massimo, 2018. "Preconditioned Nonlinear Conjugate Gradient methods based on a modified secant equation," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 196-214.
- G. Fasano, 2007. "Lanczos Conjugate-Gradient Method and Pseudoinverse Computation on Indefinite and Singular Systems," Journal of Optimization Theory and Applications, Springer, vol. 132(2), pages 267-285, February.
- David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
- Brian Irwin & Eldad Haber, 2023. "Secant penalized BFGS: a noise robust quasi-Newton method via penalizing the secant condition," Computational Optimization and Applications, Springer, vol. 84(3), pages 651-702, April.
- Matteo Lapucci & Alessio Sortino, 2024. "On the Convergence of Inexact Alternate Minimization in Problems with $$\ell _0$$ ℓ 0 Penalties," SN Operations Research Forum, Springer, vol. 5(2), pages 1-11, June.
- S. Gratton & Ph. L. Toint, 2020. "A note on solving nonlinear optimization problems in variable precision," Computational Optimization and Applications, Springer, vol. 76(3), pages 917-933, July.
- Yutao Zheng & Bing Zheng, 2017. "Two New Dai–Liao-Type Conjugate Gradient Methods for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 502-509, November.
- Yonggang Pei & Shaofang Song & Detong Zhu, 2023. "A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization," Computational Optimization and Applications, Springer, vol. 84(3), pages 1005-1033, April.
- M. Ahmadvand & M. Esmaeilbeigi & A. Kamandi & F. M. Yaghoobi, 2019. "A novel hybrid trust region algorithm based on nonmonotone and LOOCV techniques," Computational Optimization and Applications, Springer, vol. 72(2), pages 499-524, March.
- Nicolas Boutet & Rob Haelterman & Joris Degroote, 2021. "Secant Update generalized version of PSB: a new approach," Computational Optimization and Applications, Springer, vol. 78(3), pages 953-982, April.
- Falcone, Alberto & Garro, Alfredo & Mukhametzhanov, Marat S. & Sergeyev, Yaroslav D., 2021. "A Simulink-based software solution using the Infinity Computer methodology for higher order differentiation," Applied Mathematics and Computation, Elsevier, vol. 409(C).
- E. G. Birgin & J. L. Gardenghi & J. M. Martínez & S. A. Santos, 2021. "On the solution of linearly constrained optimization problems by means of barrier algorithms," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 417-441, July.
More about this item
Keywords
Large scale optimization; Truncated Newton method; Bunch and Kaufman decomposition; Gradient–related directions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:77:y:2020:i:3:d:10.1007_s10589-020-00225-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.