IDEAS home Printed from https://ideas.repec.org/a/spr/eurjco/v7y2019i4d10.1007_s13675-019-00118-4.html
   My bibliography  Save this article

Learning to steer nonlinear interior-point methods

Author

Listed:
  • Renke Kuhlmann

    (Center for Industrial Mathematics (ZeTeM))

Abstract

Interior-point or barrier methods handle nonlinear programs by sequentially solving barrier subprograms with a decreasing sequence of barrier parameters. The specific barrier update rule strongly influences the theoretical convergence properties as well as the practical efficiency. While many global and local convergence analyses consider a monotone update that decreases the barrier parameter for every approximately solved subprogram, computational studies show a superior performance of more adaptive strategies. In this paper we interpret the adaptive barrier update as a reinforcement learning task. A deep Q-learning agent is trained by both imitation and random action selection. Numerical results based on an implementation within the nonlinear programming solver WORHP show that the agent successfully learns to steer the barrier parameter and additionally improves WORHP’s performance on the CUTEst test set.

Suggested Citation

  • Renke Kuhlmann, 2019. "Learning to steer nonlinear interior-point methods," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 381-419, December.
  • Handle: RePEc:spr:eurjco:v:7:y:2019:i:4:d:10.1007_s13675-019-00118-4
    DOI: 10.1007/s13675-019-00118-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13675-019-00118-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13675-019-00118-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrea Lodi & Giulia Zarpellon, 2017. "Rejoinder on: On learning and branching: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 247-248, July.
    2. Nicholas Gould & Dominique Orban & Philippe Toint, 2015. "CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization," Computational Optimization and Applications, Springer, vol. 60(3), pages 545-557, April.
    3. Renke Kuhlmann & Christof Büskens, 2018. "A primal–dual augmented Lagrangian penalty-interior-point filter line search algorithm," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(3), pages 451-483, June.
    4. Andrea Lodi & Giulia Zarpellon, 2017. "On learning and branching: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 207-236, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    2. Brais González-Rodríguez & Joaquín Ossorio-Castillo & Julio González-Díaz & Ángel M. González-Rueda & David R. Penas & Diego Rodríguez-Martínez, 2023. "Computational advances in polynomial optimization: RAPOSa, a freely available global solver," Journal of Global Optimization, Springer, vol. 85(3), pages 541-568, March.
    3. Shen, Yunzhuang & Sun, Yuan & Li, Xiaodong & Eberhard, Andrew & Ernst, Andreas, 2023. "Adaptive solution prediction for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1392-1408.
    4. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    5. Eric Larsen & Sébastien Lachapelle & Yoshua Bengio & Emma Frejinger & Simon Lacoste-Julien & Andrea Lodi, 2022. "Predicting Tactical Solutions to Operational Planning Problems Under Imperfect Information," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 227-242, January.
    6. Dimitris Bertsimas & Cheol Woo Kim, 2023. "A Prescriptive Machine Learning Approach to Mixed-Integer Convex Optimization," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1225-1241, November.
    7. Yu Yang & Natashia Boland & Martin Savelsbergh, 2021. "Multivariable Branching: A 0-1 Knapsack Problem Case Study," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1354-1367, October.
    8. Juho Lauri & Sourav Dutta & Marco Grassia & Deepak Ajwani, 2023. "Learning fine-grained search space pruning and heuristics for combinatorial optimization," Journal of Heuristics, Springer, vol. 29(2), pages 313-347, June.
    9. Francisco Jara-Moroni & John E. Mitchell & Jong-Shi Pang & Andreas Wächter, 2020. "An enhanced logical benders approach for linear programs with complementarity constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 687-714, August.
    10. Nikolaus Furian & Michael O’Sullivan & Cameron Walker & Eranda Çela, 2021. "A machine learning-based branch and price algorithm for a sampled vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 693-732, September.
    11. Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
    12. Charly Robinson La Rocca & Jean-François Cordeau & Emma Frejinger, 2024. "One-Shot Learning for MIPs with SOS1 Constraints," SN Operations Research Forum, Springer, vol. 5(3), pages 1-28, September.
    13. Christoph Hertrich & Martin Skutella, 2023. "Provably Good Solutions to the Knapsack Problem via Neural Networks of Bounded Size," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1079-1097, September.
    14. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    15. Dimitris Bertsimas & Bartolomeo Stellato, 2022. "Online Mixed-Integer Optimization in Milliseconds," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2229-2248, July.
    16. Quentin Cappart & David Bergman & Louis-Martin Rousseau & Isabeau Prémont-Schwarz & Augustin Parjadis, 2022. "Improving Variable Orderings of Approximate Decision Diagrams Using Reinforcement Learning," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2552-2570, September.
    17. Álinson S. Xavier & Feng Qiu & Shabbir Ahmed, 2021. "Learning to Solve Large-Scale Security-Constrained Unit Commitment Problems," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 739-756, May.
    18. Yang, Yu & Boland, Natashia & Dilkina, Bistra & Savelsbergh, Martin, 2022. "Learning generalized strong branching for set covering, set packing, and 0–1 knapsack problems," European Journal of Operational Research, Elsevier, vol. 301(3), pages 828-840.
    19. Bongiovanni, Claudia & Kaspi, Mor & Cordeau, Jean-François & Geroliminis, Nikolas, 2022. "A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    20. Dogacan Yilmaz & İ. Esra Büyüktahtakın, 2023. "Learning Optimal Solutions via an LSTM-Optimization Framework," SN Operations Research Forum, Springer, vol. 4(2), pages 1-40, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjco:v:7:y:2019:i:4:d:10.1007_s13675-019-00118-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.