IDEAS home Printed from https://ideas.repec.org/r/spr/annopr/v96y2000i1p97-12410.1023-a1018995317468.html
   My bibliography  Save this item

Cyclic scheduling in robotic flowshops

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
  2. Vladimir G. Deineko & George Steiner & Zhihui Xue, 2005. "Robotic-Cell Scheduling: Special Polynomially Solvable Cases of the Traveling Salesman Problem on Permuted Monge Matrices," Journal of Combinatorial Optimization, Springer, vol. 9(4), pages 381-399, June.
  3. Hurink, Johann & Knust, Sigrid, 2005. "Tabu search algorithms for job-shop problems with a single transport robot," European Journal of Operational Research, Elsevier, vol. 162(1), pages 99-111, April.
  4. Che, Ada & Chabrol, Michelle & Gourgand, Michel & Wang, Yuan, 2012. "Scheduling multiple robots in a no-wait re-entrant robotic flowshop," International Journal of Production Economics, Elsevier, vol. 135(1), pages 199-208.
  5. Ada Che & Vladimir Kats & Eugene Levner, 2011. "Cyclic scheduling in robotic flowshops with bounded work‐in‐process levels," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(1), pages 1-16, February.
  6. Kats, Vladimir & Lei, Lei & Levner, Eugene, 2008. "Minimizing the cycle time of multiple-product processing networks with a fixed operation sequence, setups, and time-window constraints," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1196-1211, June.
  7. Sofie Coene & Frits C. R. Spieksma & Gerhard J. Woeginger, 2011. "Charlemagne's Challenge: The Periodic Latency Problem," Operations Research, INFORMS, vol. 59(3), pages 674-683, June.
  8. W Zahrouni & H Kamoun, 2011. "Transforming part-sequencing problems in a robotic cell into a GTSP," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 114-123, January.
  9. Drobouchevitch, Inna G. & Neil Geismar, H. & Sriskandarajah, Chelliah, 2010. "Throughput optimization in robotic cells with input and output machine buffers: A comparative study of two key models," European Journal of Operational Research, Elsevier, vol. 206(3), pages 623-633, November.
  10. Chelliah Sriskandarajah & Inna Drobouchevitch & Suresh P. Sethi & Ramaswamy Chandrasekaran, 2004. "Scheduling Multiple Parts in a Robotic Cell Served by a Dual-Gripper Robot," Operations Research, INFORMS, vol. 52(1), pages 65-82, February.
  11. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
  12. Hyun-Jung Kim & Jun-Ho Lee, 2021. "Cyclic robot scheduling for 3D printer-based flexible assembly systems," Annals of Operations Research, Springer, vol. 298(1), pages 339-359, March.
  13. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
  14. Gultekin, Hakan & Akturk, M. Selim & Karasan, Oya Ekin, 2006. "Cyclic scheduling of a 2-machine robotic cell with tooling constraints," European Journal of Operational Research, Elsevier, vol. 174(2), pages 777-796, October.
  15. Paul, Henrik J. & Bierwirth, Christian & Kopfer, Herbert, 2007. "A heuristic scheduling procedure for multi-item hoist production lines," International Journal of Production Economics, Elsevier, vol. 105(1), pages 54-69, January.
  16. Jiyin Liu & Yun Jiang, 2005. "An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem," Operations Research, INFORMS, vol. 53(2), pages 313-327, April.
  17. Milind Dawande & Michael Pinedo & Chelliah Sriskandarajah, 2009. "Multiple Part-Type Production in Robotic Cells: Equivalence of Two Real-World Models," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 210-228, February.
  18. Alcaide, David & Chu, Chengbin & Kats, Vladimir & Levner, Eugene & Sierksma, Gerard, 2007. "Cyclic multiple-robot scheduling with time-window constraints using a critical path approach," European Journal of Operational Research, Elsevier, vol. 177(1), pages 147-162, February.
  19. Sun, Yige & Chung, Sai-Ho & Wen, Xin & Ma, Hoi-Lam, 2021. "Novel robotic job-shop scheduling models with deadlock and robot movement considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
  20. Drobouchevitch, Inna G. & Sethi, Suresh P. & Sriskandarajah, Chelliah, 2006. "Scheduling dual gripper robotic cell: One-unit cycles," European Journal of Operational Research, Elsevier, vol. 171(2), pages 598-631, June.
  21. Feng, Jianguang & Che, Ada & Chu, Chengbin & Levner, Eugene & Kats, Vladimir, 2024. "Scheduling robotic cells with fixed processing times or time windows: Classification, solution approaches, polynomial algorithms and complexity," European Journal of Operational Research, Elsevier, vol. 319(2), pages 468-483.
  22. Carlier, Jacques & Haouari, Mohamed & Kharbeche, Mohamed & Moukrim, Aziz, 2010. "An optimization-based heuristic for the robotic cell problem," European Journal of Operational Research, Elsevier, vol. 202(3), pages 636-645, May.
  23. Tharanga Rajapakshe & Milind Dawande & Chelliah Sriskandarajah, 2011. "Quantifying the Impact of Layout on Productivity: An Analysis from Robotic-Cell Manufacturing," Operations Research, INFORMS, vol. 59(2), pages 440-454, April.
  24. Çiya Aydoğan & Sinan Gürel, 2024. "Energy efficient scheduling of a two machine robotic cell producing multiple part types," Flexible Services and Manufacturing Journal, Springer, vol. 36(4), pages 1324-1358, December.
  25. Che, Ada & Chu, Chengbin, 2009. "Multi-degree cyclic scheduling of a no-wait robotic cell with multiple robots," European Journal of Operational Research, Elsevier, vol. 199(1), pages 77-88, November.
  26. Janny M. Y. Leung & Guoqing Zhang & Xiaoguang Yang & Raymond Mak & Kokin Lam, 2004. "Optimal Cyclic Multi-Hoist Scheduling: A Mixed Integer Programming Approach," Operations Research, INFORMS, vol. 52(6), pages 965-976, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.