IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v9y2005i4d10.1007_s10878-005-1778-8.html
   My bibliography  Save this article

Robotic-Cell Scheduling: Special Polynomially Solvable Cases of the Traveling Salesman Problem on Permuted Monge Matrices

Author

Listed:
  • Vladimir G. Deineko

    (The University of Warwick)

  • George Steiner

    (McMaster University)

  • Zhihui Xue

    (McMaster University)

Abstract

In this paper, we introduce the 1 − K robotic-cell scheduling problem, whose solution can be reduced to solving a TSP on specially structured permuted Monge matrices, we call b-decomposable matrices. We also review a number of other scheduling problems which all reduce to solving TSP-s on permuted Monge matrices. We present the important insight that the TSP on b-decomposable matrices can be solved in polynomial time by a special adaptation of the well-known subtour-patching technique. We discuss efficient implementations of this algorithm on newly defined subclasses of permuted Monge matrices.

Suggested Citation

  • Vladimir G. Deineko & George Steiner & Zhihui Xue, 2005. "Robotic-Cell Scheduling: Special Polynomially Solvable Cases of the Traveling Salesman Problem on Permuted Monge Matrices," Journal of Combinatorial Optimization, Springer, vol. 9(4), pages 381-399, June.
  • Handle: RePEc:spr:jcomop:v:9:y:2005:i:4:d:10.1007_s10878-005-1778-8
    DOI: 10.1007/s10878-005-1778-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-005-1778-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-005-1778-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas G. Hall & Hichem Kamoun & Chelliah Sriskandarajah, 1997. "Scheduling in Robotic Cells: Classification, Two and Three Machine Cells," Operations Research, INFORMS, vol. 45(3), pages 421-439, June.
    2. Y. Crama & V. Kats & J. van de Klundert & E. Levner, 2000. "Cyclic scheduling in robotic flowshops," Annals of Operations Research, Springer, vol. 96(1), pages 97-124, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drobouchevitch, Inna G. & Sethi, Suresh P. & Sriskandarajah, Chelliah, 2006. "Scheduling dual gripper robotic cell: One-unit cycles," European Journal of Operational Research, Elsevier, vol. 171(2), pages 598-631, June.
    2. Chelliah Sriskandarajah & Inna Drobouchevitch & Suresh P. Sethi & Ramaswamy Chandrasekaran, 2004. "Scheduling Multiple Parts in a Robotic Cell Served by a Dual-Gripper Robot," Operations Research, INFORMS, vol. 52(1), pages 65-82, February.
    3. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    4. Drobouchevitch, Inna G. & Neil Geismar, H. & Sriskandarajah, Chelliah, 2010. "Throughput optimization in robotic cells with input and output machine buffers: A comparative study of two key models," European Journal of Operational Research, Elsevier, vol. 206(3), pages 623-633, November.
    5. W Zahrouni & H Kamoun, 2011. "Transforming part-sequencing problems in a robotic cell into a GTSP," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 114-123, January.
    6. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
    7. Gultekin, Hakan & Akturk, M. Selim & Karasan, Oya Ekin, 2006. "Cyclic scheduling of a 2-machine robotic cell with tooling constraints," European Journal of Operational Research, Elsevier, vol. 174(2), pages 777-796, October.
    8. Carlier, Jacques & Haouari, Mohamed & Kharbeche, Mohamed & Moukrim, Aziz, 2010. "An optimization-based heuristic for the robotic cell problem," European Journal of Operational Research, Elsevier, vol. 202(3), pages 636-645, May.
    9. Milind Dawande & Michael Pinedo & Chelliah Sriskandarajah, 2009. "Multiple Part-Type Production in Robotic Cells: Equivalence of Two Real-World Models," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 210-228, February.
    10. Hall, Nicholas G. & Kamoun, Hichem & Sriskandarajah, Chelliah, 1998. "Scheduling in robotic cells: Complexity and steady state analysis," European Journal of Operational Research, Elsevier, vol. 109(1), pages 43-65, August.
    11. Neil Geismar, H. & Dawande, Milind & Sriskandarajah, Chelliah, 2005. "Approximation algorithms for k-unit cyclic solutions in robotic cells," European Journal of Operational Research, Elsevier, vol. 162(2), pages 291-309, April.
    12. Paul, Henrik J. & Bierwirth, Christian & Kopfer, Herbert, 2007. "A heuristic scheduling procedure for multi-item hoist production lines," International Journal of Production Economics, Elsevier, vol. 105(1), pages 54-69, January.
    13. Kats, Vladimir & Lei, Lei & Levner, Eugene, 2008. "Minimizing the cycle time of multiple-product processing networks with a fixed operation sequence, setups, and time-window constraints," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1196-1211, June.
    14. Sofie Coene & Frits C. R. Spieksma & Gerhard J. Woeginger, 2011. "Charlemagne's Challenge: The Periodic Latency Problem," Operations Research, INFORMS, vol. 59(3), pages 674-683, June.
    15. Batur, G. Didem & Karasan, Oya Ekin & Akturk, M. Selim, 2012. "Multiple part-type scheduling in flexible robotic cells," International Journal of Production Economics, Elsevier, vol. 135(2), pages 726-740.
    16. Milind Dawande & Chelliah Sriskandarajah & Suresh Sethi, 2002. "On Throughput Maximization in Constant Travel-Time Robotic Cells," Manufacturing & Service Operations Management, INFORMS, vol. 4(4), pages 296-312, August.
    17. Jiyin Liu & Yun Jiang, 2005. "An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem," Operations Research, INFORMS, vol. 53(2), pages 313-327, April.
    18. Sun, Yige & Chung, Sai-Ho & Wen, Xin & Ma, Hoi-Lam, 2021. "Novel robotic job-shop scheduling models with deadlock and robot movement considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    19. Zhi-Long Chen & Nicholas G. Hall, 2008. "Maximum Profit Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 10(1), pages 84-107, February.
    20. Tharanga Rajapakshe & Milind Dawande & Chelliah Sriskandarajah, 2011. "Quantifying the Impact of Layout on Productivity: An Analysis from Robotic-Cell Manufacturing," Operations Research, INFORMS, vol. 59(2), pages 440-454, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:9:y:2005:i:4:d:10.1007_s10878-005-1778-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.