IDEAS home Printed from https://ideas.repec.org/r/spr/annopr/v76y1998i0p55-7110.1023-a1018956823693.html
   My bibliography  Save this item

Stowage planning for container ships to reduce the number of shifts

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Petering, Matthew E.H. & Hussein, Mazen I., 2013. "A new mixed integer program and extended look-ahead heuristic algorithm for the block relocation problem," European Journal of Operational Research, Elsevier, vol. 231(1), pages 120-130.
  2. Lehnfeld, Jana & Knust, Sigrid, 2014. "Loading, unloading and premarshalling of stacks in storage areas: Survey and classification," European Journal of Operational Research, Elsevier, vol. 239(2), pages 297-312.
  3. Chaemin Lee & Mun Keong Lee & Jae Young Shin, 2020. "Lashing Force Prediction Model with Multimodal Deep Learning and AutoML for Stowage Planning Automation in Containerships," Logistics, MDPI, vol. 5(1), pages 1-15, December.
  4. Kjetil Fagerholt & Lars Hvattum & Trond Johnsen & Jarl Korsvik, 2013. "Routing and scheduling in project shipping," Annals of Operations Research, Springer, vol. 207(1), pages 67-81, August.
  5. Fazi, Stefano, 2019. "A decision-support framework for the stowage of maritime containers in inland shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 1-23.
  6. Franzkeit, Janna & Schwientek, Anne Kathrina & Jahn, Carlos, 2020. "Stowage planning for inland container vessels: A literature review," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 247-280, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  7. Imai, Akio & Sasaki, Kazuya & Nishimura, Etsuko & Papadimitriou, Stratos, 2006. "Multi-objective simultaneous stowage and load planning for a container ship with container rehandle in yard stacks," European Journal of Operational Research, Elsevier, vol. 171(2), pages 373-389, June.
  8. R. Roberti & D. Pacino, 2018. "A Decomposition Method for Finding Optimal Container Stowage Plans," Service Science, INFORMS, vol. 52(6), pages 1444-1462, December.
  9. Yung-Cheng Lai & Yanfeng Ouyang & Christopher P. L. Barkan, 2008. "A Rolling Horizon Model to Optimize Aerodynamic Efficiency of Intermodal Freight Trains with Uncertainty," Transportation Science, INFORMS, vol. 42(4), pages 466-477, November.
  10. Ji, Mingjun & Guo, Wenwen & Zhu, Huiling & Yang, Yongzhi, 2015. "Optimization of loading sequence and rehandling strategy for multi-quay crane operations in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 1-19.
  11. Christensen, Jonas & Erera, Alan & Pacino, Dario, 2019. "A rolling horizon heuristic for the stochastic cargo mix problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 200-220.
  12. Shih-Liang Chao & Pi-Hung Lin, 2021. "Minimizing overstowage in master bay plans of large container ships," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 71-93, March.
  13. Cherkesly, Marilène & Gschwind, Timo, 2022. "The pickup and delivery problem with time windows, multiple stacks, and handling operations," European Journal of Operational Research, Elsevier, vol. 301(2), pages 647-666.
  14. Adrián Ramírez-Nafarrate & Rosa G. González-Ramírez & Neale R. Smith & Roberto Guerra-Olivares & Stefan Voß, 2017. "Impact on yard efficiency of a truck appointment system for a port terminal," Annals of Operations Research, Springer, vol. 258(2), pages 195-216, November.
  15. Dalia Rashed & Amr Eltawil & Mohamed Gheith, 2021. "A Fuzzy Logic-Based Algorithm to Solve the Slot Planning Problem in Container Vessels," Logistics, MDPI, vol. 5(4), pages 1-24, September.
  16. Hyunwoo Park & Christian C. Blanco & Elliot Bendoly, 2022. "Vessel sharing and its impact on maritime operations and carbon emissions," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2925-2942, July.
  17. Byung Kwon Lee & Joyce M. W. Low, 2022. "A constraint programming approach to capacity planning in container vessels," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 415-438, June.
  18. Monaco, Maria Flavia & Sammarra, Marcello & Sorrentino, Gregorio, 2014. "The Terminal-Oriented Ship Stowage Planning Problem," European Journal of Operational Research, Elsevier, vol. 239(1), pages 256-265.
  19. Christensen, Jonas & Pacino, Dario, 2017. "A matheuristic for the Cargo Mix Problem with Block Stowage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 151-171.
  20. Delgado, Alberto & Jensen, Rune Møller & Janstrup, Kira & Rose, Trine Høyer & Andersen, Kent Høj, 2012. "A Constraint Programming model for fast optimal stowage of container vessel bays," European Journal of Operational Research, Elsevier, vol. 220(1), pages 251-261.
  21. Caserta, Marco & Schwarze, Silvia & Voß, Stefan, 2012. "A mathematical formulation and complexity considerations for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 219(1), pages 96-104.
  22. Parreño, Francisco & Pacino, Dario & Alvarez-Valdes, Ramon, 2016. "A GRASP algorithm for the container stowage slot planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 141-157.
  23. Ananthapadmanabhan Narasimhan & Udatta S. Palekar, 2002. "Analysis and Algorithms for the Transtainer Routing Problem in Container Port Operations," Transportation Science, INFORMS, vol. 36(1), pages 63-78, February.
  24. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
  25. Lixin Tang & Jiyin Liu & Fei Yang & Feng Li & Kun Li, 2015. "Modeling and solution for the ship stowage planning problem of coils in the steel industry," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(7), pages 564-581, October.
  26. Chien-Chang Chou & Pao-Yi Fang, 2021. "Applying expert knowledge to containership stowage planning: an empirical study," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 4-27, March.
  27. Shih-Liang Chao & Pi-Hung Lin, 0. "Minimizing overstowage in master bay plans of large container ships," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 0, pages 1-23.
  28. Ding, Ding & Chou, Mabel C., 2015. "Stowage planning for container ships: A heuristic algorithm to reduce the number of shifts," European Journal of Operational Research, Elsevier, vol. 246(1), pages 242-249.
  29. Rui Rei & João Pedroso, 2013. "Tree search for the stacking problem," Annals of Operations Research, Springer, vol. 203(1), pages 371-388, March.
  30. Rune Larsen & Dario Pacino, 2021. "A heuristic and a benchmark for the stowage planning problem," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 94-122, March.
  31. Dusan Ku & Tiru S. Arthanari, 2016. "On double cycling for container port productivity improvement," Annals of Operations Research, Springer, vol. 243(1), pages 55-70, August.
  32. Huiling Zhu, 2022. "Integrated Containership Stowage Planning: A Methodology for Coordinating Containership Stowage Plan and Terminal Yard Operations," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.