IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v203y2013i1p371-38810.1007-s10479-012-1186-2.html
   My bibliography  Save this article

Tree search for the stacking problem

Author

Listed:
  • Rui Rei
  • João Pedroso

Abstract

The stacking problem is a hard combinatorial optimization problem with high practical interest in, for example, steel storage or container port operations. In this problem, a set of items is stored in a warehouse for a period of time, and a crane is used to place them in a limited number of stacks. Since the entrance and exit of items occurs in an arbitrary order, items may have to be relocated in order to reach and deliver other items below them. The objective of the problem is to find a feasible sequence of movements that delivers all items, while minimizing the total number of movements. We study the scalability of an exact approach to this problem, and propose two heuristic methods to solve it approximately. The two heuristic approaches are a multiple simulation algorithm using semi-greedy construction heuristics, and a stochastic best-first tree search algorithm. The two methods are compared in a set of challenging instances, revealing a superior performance of the tree search approach in most cases. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Rui Rei & João Pedroso, 2013. "Tree search for the stacking problem," Annals of Operations Research, Springer, vol. 203(1), pages 371-388, March.
  • Handle: RePEc:spr:annopr:v:203:y:2013:i:1:p:371-388:10.1007/s10479-012-1186-2
    DOI: 10.1007/s10479-012-1186-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1186-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1186-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedroso, João Pedro & Kubo, Mikio, 2010. "Heuristics and exact methods for number partitioning," European Journal of Operational Research, Elsevier, vol. 202(1), pages 73-81, April.
    2. Mordecai Avriel & Michal Penn & Naomi Shpirer & Smadar Witteboon, 1998. "Stowage planning for container ships to reduce the number of shifts," Annals of Operations Research, Springer, vol. 76(0), pages 55-71, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Weimiao & Deng, Tianhu & Li, Jianbin, 2019. "Product packing and stacking under uncertainty: A robust approach," European Journal of Operational Research, Elsevier, vol. 277(3), pages 903-917.
    2. Lehnfeld, Jana & Knust, Sigrid, 2014. "Loading, unloading and premarshalling of stacks in storage areas: Survey and classification," European Journal of Operational Research, Elsevier, vol. 239(2), pages 297-312.
    3. Jin, Bo & Tanaka, Shunji, 2023. "An exact algorithm for the unrestricted container relocation problem with new lower bounds and dominance rules," European Journal of Operational Research, Elsevier, vol. 304(2), pages 494-514.
    4. Galle, Virgile & Barnhart, Cynthia & Jaillet, Patrick, 2018. "Yard Crane Scheduling for container storage, retrieval, and relocation," European Journal of Operational Research, Elsevier, vol. 271(1), pages 288-316.
    5. Martin Olsen & Lars Nørvang Andersen & Allan Gross, 2023. "An asymptotically optimal algorithm for online stacking," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(2), pages 161-178, April.
    6. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dusan Ku & Tiru S. Arthanari, 2016. "On double cycling for container port productivity improvement," Annals of Operations Research, Springer, vol. 243(1), pages 55-70, August.
    2. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    3. Parreño, Francisco & Pacino, Dario & Alvarez-Valdes, Ramon, 2016. "A GRASP algorithm for the container stowage slot planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 141-157.
    4. Ding, Ding & Chou, Mabel C., 2015. "Stowage planning for container ships: A heuristic algorithm to reduce the number of shifts," European Journal of Operational Research, Elsevier, vol. 246(1), pages 242-249.
    5. Rune Larsen & Dario Pacino, 2021. "A heuristic and a benchmark for the stowage planning problem," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 94-122, March.
    6. Byung Kwon Lee & Joyce M. W. Low, 2022. "A constraint programming approach to capacity planning in container vessels," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 415-438, June.
    7. Chaemin Lee & Mun Keong Lee & Jae Young Shin, 2020. "Lashing Force Prediction Model with Multimodal Deep Learning and AutoML for Stowage Planning Automation in Containerships," Logistics, MDPI, vol. 5(1), pages 1-15, December.
    8. Christensen, Jonas & Erera, Alan & Pacino, Dario, 2019. "A rolling horizon heuristic for the stochastic cargo mix problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 200-220.
    9. Caserta, Marco & Schwarze, Silvia & Voß, Stefan, 2012. "A mathematical formulation and complexity considerations for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 219(1), pages 96-104.
    10. Lehnfeld, Jana & Knust, Sigrid, 2014. "Loading, unloading and premarshalling of stacks in storage areas: Survey and classification," European Journal of Operational Research, Elsevier, vol. 239(2), pages 297-312.
    11. Cherkesly, Marilène & Gschwind, Timo, 2022. "The pickup and delivery problem with time windows, multiple stacks, and handling operations," European Journal of Operational Research, Elsevier, vol. 301(2), pages 647-666.
    12. Fazi, Stefano, 2019. "A decision-support framework for the stowage of maritime containers in inland shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 1-23.
    13. Delgado, Alberto & Jensen, Rune Møller & Janstrup, Kira & Rose, Trine Høyer & Andersen, Kent Høj, 2012. "A Constraint Programming model for fast optimal stowage of container vessel bays," European Journal of Operational Research, Elsevier, vol. 220(1), pages 251-261.
    14. Dalia Rashed & Amr Eltawil & Mohamed Gheith, 2021. "A Fuzzy Logic-Based Algorithm to Solve the Slot Planning Problem in Container Vessels," Logistics, MDPI, vol. 5(4), pages 1-24, September.
    15. Adrián Ramírez-Nafarrate & Rosa G. González-Ramírez & Neale R. Smith & Roberto Guerra-Olivares & Stefan Voß, 2017. "Impact on yard efficiency of a truck appointment system for a port terminal," Annals of Operations Research, Springer, vol. 258(2), pages 195-216, November.
    16. Monaco, Maria Flavia & Sammarra, Marcello & Sorrentino, Gregorio, 2014. "The Terminal-Oriented Ship Stowage Planning Problem," European Journal of Operational Research, Elsevier, vol. 239(1), pages 256-265.
    17. Imai, Akio & Sasaki, Kazuya & Nishimura, Etsuko & Papadimitriou, Stratos, 2006. "Multi-objective simultaneous stowage and load planning for a container ship with container rehandle in yard stacks," European Journal of Operational Research, Elsevier, vol. 171(2), pages 373-389, June.
    18. Lixin Tang & Jiyin Liu & Fei Yang & Feng Li & Kun Li, 2015. "Modeling and solution for the ship stowage planning problem of coils in the steel industry," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(7), pages 564-581, October.
    19. R. Roberti & D. Pacino, 2018. "A Decomposition Method for Finding Optimal Container Stowage Plans," Service Science, INFORMS, vol. 52(6), pages 1444-1462, December.
    20. Hyunwoo Park & Christian C. Blanco & Elliot Bendoly, 2022. "Vessel sharing and its impact on maritime operations and carbon emissions," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2925-2942, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:203:y:2013:i:1:p:371-388:10.1007/s10479-012-1186-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.