My bibliography
Save this item
Mixed Frequency Data Sampling Regression Models: The R Package midasr
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xu, Qifa & Xu, Mengnan & Jiang, Cuixia & Fu, Weizhong, 2023. "Mixed-frequency Growth-at-Risk with the MIDAS-QR method: Evidence from China," Economic Systems, Elsevier, vol. 47(4).
- Marina Diakonova & Luis Molina & Hannes Mueller & Javier J. Pérez & Cristopher Rauh, 2022.
"The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting,"
Working Papers
2232, Banco de España.
- Diakonova, M. & Molina, L. & Mueller, H. & Pérez, J. J. & Rauh, C., 2024. "The Information Content of Conflict, Social Unrest and Policy Uncertainty Measures for Macroeconomic Forecasting," Cambridge Working Papers in Economics 2418, Faculty of Economics, University of Cambridge.
- Diakonova, M. & Molina, L. & Mueller, H. & Pérez, J. J. & Rauh, C., 2024. "The Information Content of Conflict, Social Unrest and Policy Uncertainty Measures for Macroeconomic Forecasting," Janeway Institute Working Papers 2413, Faculty of Economics, University of Cambridge.
- Gustavo Adolfo HERNANDEZ DIAZ & Margarita MARÍN JARAMILLO, 2016. "Pronóstico del Consumo Privado: Usando datos de alta frecuencia para el pronóstico de variables de baja frecuencia," Archivos de Economía 14828, Departamento Nacional de Planeación.
- Layna Mosley & Victoria Paniagua & Erik Wibbels, 2020. "Moving markets? Government bond investors and microeconomic policy changes," Economics and Politics, Wiley Blackwell, vol. 32(2), pages 197-249, July.
- Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
- Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2020. "Testing a large set of zero restrictions in regression models, with an application to mixed frequency Granger causality," Journal of Econometrics, Elsevier, vol. 218(2), pages 633-654.
- Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
- Kyosuke Chikamatsu, Naohisa Hirakata, Yosuke Kido, Kazuki Otaka, 2018. "Nowcasting Japanese GDPs," Bank of Japan Working Paper Series 18-E-18, Bank of Japan.
- Sarun Kamolthip, 2021.
"Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data,"
PIER Discussion Papers
165, Puey Ungphakorn Institute for Economic Research.
- Sarun Kamolthip, 2021. "Macroeconomic forecasting with LSTM and mixed frequency time series data," Papers 2109.13777, arXiv.org.
- Jiang, Cuixia & Nie, Yubing & Xu, Qifa, 2023. "A MIDAS multinomial logit model with applications for bond ratings," Global Finance Journal, Elsevier, vol. 57(C).
- Stankevich, Ivan, 2020. "Comparison of macroeconomic indicators nowcasting methods: Russian GDP case," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 113-127.
- Seong, Byeongchan, 2020. "Smoothing and forecasting mixed-frequency time series with vector exponential smoothing models," Economic Modelling, Elsevier, vol. 91(C), pages 463-468.
- Axel Groß-Klußmann, 2024. "Learning deep news sentiment representations for macro-finance," Digital Finance, Springer, vol. 6(3), pages 341-377, September.
- Ioannis Chalkiadakis & Gareth W. Peters & Matthew Ames, 2023. "Hybrid ARDL-MIDAS-Transformer time-series regressions for multi-topic crypto market sentiment driven by price and technology factors," Digital Finance, Springer, vol. 5(2), pages 295-365, June.
- Lahiri, Kajal & Yang, Cheng, 2022.
"Boosting tax revenues with mixed-frequency data in the aftermath of COVID-19: The case of New York,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 545-566.
- Kajal Lahiri & Cheng Yang, 2021. "Boosting Tax Revenues with Mixed-Frequency Data in the Aftermath of Covid-19: The Case of New York," CESifo Working Paper Series 9365, CESifo.
- Alves, Renan Santos & Palma, Andreza A., 2024. "The effectiveness of fiscal policy in Brazil through the MIDAS Lens," Journal of Policy Modeling, Elsevier, vol. 46(1), pages 113-128.
- Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, vol. 3(1), pages 1-53, January.
- Qifa Xu & Zezhou Wang & Cuixia Jiang & Yezheng Liu, 2023. "Deep learning on mixed frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2099-2120, December.
- Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
- Luke Hartigan & Tom Rosewall, 2024.
"Nowcasting Quarterly GDP Growth during the COVID-19 Crisis Using a Monthly Activity Indicator,"
Working Papers
2024-15, University of Sydney, School of Economics.
- Luke Hartigan & Tom Rosewall, 2024. "Nowcasting Quarterly GDP Growth during the COVID-19 Crisis Using a Monthly Activity Indicator," RBA Research Discussion Papers rdp2024-04, Reserve Bank of Australia.
- Afees A. Salisu & Raymond Swaray, 2020.
"Forecasting the Return Volatility of Energy Prices: A GARCH-MIDAS Approach,"
World Scientific Book Chapters, in: Stéphane Goutte & Duc Khuong Nguyen (ed.), HANDBOOK OF ENERGY FINANCE Theories, Practices and Simulations, chapter 3, pages 47-71,
World Scientific Publishing Co. Pte. Ltd..
- Afees A. Salisu & Raymond Swaray, 2017. "Forecasting the return volatility of energy prices: A GARCH MIDAS approach," Working Papers 029, Centre for Econometric and Allied Research, University of Ibadan.
- Bhaghoe, S. & Ooft, G. & Franses, Ph.H.B.F., 2019. "Estimates of quarterly GDP growth using MIDAS regressions," Econometric Institute Research Papers EI2019-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Cuixia Jiang & Tingting Zhao & Qifa Xu & Dan Hu, 2024. "An unrestricted MIDAS ordered logit model with applications to credit ratings," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 2722-2739, July.
- Jiang, Cuixia & Xiong, Wei & Xu, Qifa & Liu, Yezheng, 2021. "Predicting default of listed companies in mainland China via U-MIDAS Logit model with group lasso penalty," Finance Research Letters, Elsevier, vol. 38(C).
- Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
- Goldmann, Leonie & Crook, Jonathan & Calabrese, Raffaella, 2024. "A new ordinal mixed-data sampling model with an application to corporate credit rating levels," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1111-1126.
- Hale, Galina & Lopez, Jose A., 2019.
"Monitoring banking system connectedness with big data,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 203-220.
- Galina Hale & Jose A. Lopez, 2018. "Monitoring Banking System Connectedness with Big Data," Working Paper Series 2018-01, Federal Reserve Bank of San Francisco.
- Hale, Galina & Lopez, Jose A, 2023. "Monitoring Banking System Connectedness with Big Data," Santa Cruz Department of Economics, Working Paper Series qt17h5v7rj, Department of Economics, UC Santa Cruz.
- Nuttanan Wichitaksorn, 2020. "Analyzing and Forecasting Thai Macroeconomic Data using Mixed-Frequency Approach," PIER Discussion Papers 146, Puey Ungphakorn Institute for Economic Research.
- Stankevich, Ivan, 2023. "Application of Markov-Switching MIDAS models to nowcasting of GDP and its components," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 70, pages 122-143.
- Raffaele Mattera & Michelangelo Misuraca & Maria Spano & Germana Scepi, 2023. "Mixed frequency composite indicators for measuring public sentiment in the EU," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2357-2382, June.
- Katerina Volchek & Anyu Liu & Haiyan Song & Dimitrios Buhalis, 2019. "Forecasting tourist arrivals at attractions: Search engine empowered methodologies," Tourism Economics, , vol. 25(3), pages 425-447, May.
- Gong, Xu & Sun, Yi & Du, Zhili, 2022. "Geopolitical risk and China's oil security," Energy Policy, Elsevier, vol. 163(C).
- Chikamatsu, Kyosuke & Hirakata, Naohisa & Kido, Yosuke & Otaka, Kazuki, 2021. "Mixed-frequency approaches to nowcasting GDP: An application to Japan," Japan and the World Economy, Elsevier, vol. 57(C).
- Tretyakov, Dmitriy & Fokin, Nikita, 2020. "Помогают Ли Высокочастотные Данные В Прогнозировании Российской Инфляции? [Does the high-frequency data is helpful for forecasting Russian inflation?]," MPRA Paper 109556, University Library of Munich, Germany.
- Lin, Jiahe & Michailidis, George, 2024. "A multi-task encoder-dual-decoder framework for mixed frequency data prediction," International Journal of Forecasting, Elsevier, vol. 40(3), pages 942-957.
- Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
- Julián Alonso Cárdenas-Cárdenas & Edgar Caicedo-García & Eliana R. González Molano, 2020. "Estimación de la variación del precio de los alimentos con modelos de frecuencias mixtas," Borradores de Economia 1109, Banco de la Republica de Colombia.
- Mei, Xueting & Wang, Xinyu, 2024. "Forecasting stock volatility using time-distance weighting fundamental’s shocks," Finance Research Letters, Elsevier, vol. 65(C).
- Nava, Consuelo R. & Osti, Linda & Zoia, Maria Grazia, 2022. "Forecasting Domestic Tourism across Regional Destinations through MIDAS Regressions," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202207, University of Turin.
- Bahram Adrangi & Arjun Chatrath & Kambiz Raffiee, 2023. "S&P 500 volatility, volatility regimes, and economic uncertainty," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 1362-1387, October.
- Maghyereh Aktham & Sweidan Osama & Awartani Basel, 2020. "Asymmetric Responses of Economic Growth to Daily Oil Price Changes: New Global Evidence from Mixed-data Sampling Approach," Review of Economics, De Gruyter, vol. 71(2), pages 81-99, August.
- Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
- Laine, Olli-Matti & Lindblad, Annika, 2020. "Nowcasting Finnish GDP growth using financial variables: a MIDAS approach," BoF Economics Review 4/2020, Bank of Finland.
- Ghysels, Eric & Qian, Hang, 2019. "Estimating MIDAS regressions via OLS with polynomial parameter profiling," Econometrics and Statistics, Elsevier, vol. 9(C), pages 1-16.
- Iva Glišic, 2024. "A comparison of using MIDAS and LSTM models for GDP nowcasting," Working Papers Bulletin 22, National Bank of Serbia.
- Wichitaksorn, Nuttanan, 2022. "Analyzing and forecasting Thai macroeconomic data using mixed-frequency approach," Journal of Asian Economics, Elsevier, vol. 78(C).