IDEAS home Printed from https://ideas.repec.org/r/hal/journl/hal-01741661.html
   My bibliography  Save this item

A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Narendra Singh & Pushpa Singh & Mukul Gupta, 2020. "An inclusive survey on machine learning for CRM: a paradigm shift," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 447-457, December.
  2. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
  3. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
  4. Szeląg, Marcin & Słowiński, Roman, 2024. "Explaining and predicting customer churn by monotonic rules induced from ordinal data," European Journal of Operational Research, Elsevier, vol. 317(2), pages 414-424.
  5. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
  6. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
  7. Liu, Zhenkun & Zhang, Ying & Abedin, Mohammad Zoynul & Wang, Jianzhou & Yang, Hufang & Gao, Yuyang & Chen, Yinghao, 2024. "Profit-driven fusion framework based on bagging and boosting classifiers for potential purchaser prediction," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
  8. Van Nguyen, Truong & Zhou, Li & Chong, Alain Yee Loong & Li, Boying & Pu, Xiaodie, 2020. "Predicting customer demand for remanufactured products: A data-mining approach," European Journal of Operational Research, Elsevier, vol. 281(3), pages 543-558.
  9. Chen, Yan & Zhang, Lei & Zhao, Yulu & Xu, Bing, 2022. "Implementation of penalized survival models in churn prediction of vehicle insurance," Journal of Business Research, Elsevier, vol. 153(C), pages 162-171.
  10. Petra Posedel v{S}imovi'c & Davor Horvatic & Edward W. Sun, 2021. "Classifying variety of customer's online engagement for churn prediction with mixed-penalty logistic regression," Papers 2105.07671, arXiv.org, revised Jul 2021.
  11. Andreea Dumitrache & Monica Mihaela Maer Matei, 2019. "Churn Analysis in a Romanian Telecommunications Company," Postmodern Openings, Editura Lumen, Department of Economics, vol. 10(4), pages 44-53, December.
  12. Petra P. Šimović & Claire Y. T. Chen & Edward W. Sun, 2023. "Classifying the Variety of Customers’ Online Engagement for Churn Prediction with a Mixed-Penalty Logistic Regression," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 451-485, January.
  13. Mansouri, S. Afshin & Golmohammadi, Davood & Miller, Jason, 2019. "The moderating role of master production scheduling method on throughput in job shop systems," International Journal of Production Economics, Elsevier, vol. 216(C), pages 67-80.
  14. Chandrasekhar Valluri & Sudhakar Raju & Vivek H. Patil, 2022. "Customer determinants of used auto loan churn: comparing predictive performance using machine learning techniques," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(3), pages 279-296, September.
  15. Tianyuan Zhang & Sérgio Moro & Ricardo F. Ramos, 2022. "A Data-Driven Approach to Improve Customer Churn Prediction Based on Telecom Customer Segmentation," Future Internet, MDPI, vol. 14(3), pages 1-19, March.
  16. Ebru Pekel Ozmen & Tuncay Ozcan, 2022. "A novel deep learning model based on convolutional neural networks for employee churn prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 539-550, April.
  17. Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
  18. Borchert, Philipp & Coussement, Kristof & De Caigny, Arno & De Weerdt, Jochen, 2023. "Extending business failure prediction models with textual website content using deep learning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 348-357.
  19. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
  20. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2021. "A multi-period analysis of the integrated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 292(2), pages 483-499.
  21. Baumann, P. & Hochbaum, D.S. & Yang, Y.T., 2019. "A comparative study of the leading machine learning techniques and two new optimization algorithms," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1041-1057.
  22. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
  23. Meire, Matthijs, 2021. "Customer comeback: Empirical insights into the drivers and value of returning customers," Journal of Business Research, Elsevier, vol. 127(C), pages 193-205.
  24. Ni, Ji & Chen, Bowei & Allinson, Nigel M. & Ye, Xujiong, 2020. "A hybrid model for predicting human physical activity status from lifelogging data," European Journal of Operational Research, Elsevier, vol. 281(3), pages 532-542.
  25. Thuy, Arthur & Benoit, Dries F., 2024. "Explainability through uncertainty: Trustworthy decision-making with neural networks," European Journal of Operational Research, Elsevier, vol. 317(2), pages 330-340.
  26. Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
  27. Lewlisa Saha & Hrudaya Kumar Tripathy & Tarek Gaber & Hatem El-Gohary & El-Sayed M. El-kenawy, 2023. "Deep Churn Prediction Method for Telecommunication Industry," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
  28. Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
  29. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
  30. Sobrie, Léon & Verschelde, Marijn & Roets, Bart, 2024. "Explainable real-time predictive analytics on employee workload in digital railway control rooms," European Journal of Operational Research, Elsevier, vol. 317(2), pages 437-448.
  31. Hemlata Jain & Ajay Khunteta & Sumit Srivastava, 2021. "Telecom churn prediction and used techniques, datasets and performance measures: a review," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 76(4), pages 613-630, April.
  32. Louis Geiler & Séverine Affeldt & Mohamed Nadif, 2022. "A survey on machine learning methods for churn prediction," Post-Print hal-03824873, HAL.
  33. Stevens, Alexander & De Smedt, Johannes, 2024. "Explainability in process outcome prediction: Guidelines to obtain interpretable and faithful models," European Journal of Operational Research, Elsevier, vol. 317(2), pages 317-329.
  34. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
  35. Zihayat, Morteza & Ayanso, Anteneh & Davoudi, Heidar & Kargar, Mehdi & Mengesha, Nigussie, 2021. "Leveraging non-respondent data in customer satisfaction modeling," Journal of Business Research, Elsevier, vol. 135(C), pages 112-126.
  36. Kraus, Mathias & Tschernutter, Daniel & Weinzierl, Sven & Zschech, Patrick, 2024. "Interpretable generalized additive neural networks," European Journal of Operational Research, Elsevier, vol. 317(2), pages 303-316.
  37. Li, Mengyu & Vanberkel, Peter & Zhong, Xiang, 2022. "Predicting ambulance offload delay using a hybrid decision tree model," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
  38. Amin, Adnan & Shah, Babar & Khattak, Asad Masood & Lopes Moreira, Fernando Joaquim & Ali, Gohar & Rocha, Alvaro & Anwar, Sajid, 2019. "Cross-company customer churn prediction in telecommunication: A comparison of data transformation methods," International Journal of Information Management, Elsevier, vol. 46(C), pages 304-319.
  39. Schaeffer, Satu Elisa & Rodriguez Sanchez, Sara Veronica, 2020. "Forecasting client retention — A machine-learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
  40. Yuan, Kunpeng & Chi, Guotai & Zhou, Ying & Yin, Hailei, 2022. "A novel two-stage hybrid default prediction model with k-means clustering and support vector domain description," Research in International Business and Finance, Elsevier, vol. 59(C).
  41. Choicharoon, Aritad & Hodgett, Richard & Summers, Barbara & Siraj, Sajid, 2024. "Hit or miss: A decision support system framework for signing new musical talent," European Journal of Operational Research, Elsevier, vol. 312(1), pages 324-337.
  42. Wen Zhang & Andrew Dunkley & Urvi Kanabar & David Elliott & Henry P. Wynn, 2022. "A decision support system for liability in civil litigation: a case study from an insurance company," Annals of Operations Research, Springer, vol. 315(2), pages 695-706, August.
  43. Youngkeun Choi & Jae W. Choi, 2023. "Assessing the Predictive Performance of Machine Learning in Direct Marketing Response," International Journal of E-Business Research (IJEBR), IGI Global, vol. 19(1), pages 1-12, January.
  44. Lamrhari, Soumaya & Ghazi, Hamid El & Oubrich, Mourad & Faker, Abdellatif El, 2022. "A social CRM analytic framework for improving customer retention, acquisition, and conversion," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
  45. Haupt, Johannes & Lessmann, Stefan, 2022. "Targeting customers under response-dependent costs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 369-379.
  46. Amit Neil Ramkissoon & Wayne Goodridge, 2022. "Enhancing the Predictive Performance of Credibility-Based Fake News Detection Using Ensemble Learning," The Review of Socionetwork Strategies, Springer, vol. 16(2), pages 259-289, October.
  47. Arno de Caigny & Kristof Coussement & Koen de Bock, 2020. "Leveraging fine-grained transaction data for customer life event predictions," Post-Print hal-02507998, HAL.
  48. Lewlisa Saha & Hrudaya Kumar Tripathy & Soumya Ranjan Nayak & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "Amalgamation of Customer Relationship Management and Data Analytics in Different Business Sectors—A Systematic Literature Review," Sustainability, MDPI, vol. 13(9), pages 1-35, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.