IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v46y2019icp304-319.html
   My bibliography  Save this article

Cross-company customer churn prediction in telecommunication: A comparison of data transformation methods

Author

Listed:
  • Amin, Adnan
  • Shah, Babar
  • Khattak, Asad Masood
  • Lopes Moreira, Fernando Joaquim
  • Ali, Gohar
  • Rocha, Alvaro
  • Anwar, Sajid

Abstract

Cross-Company Churn Prediction (CCCP) is a domain of research where one company (target) is lacking enough data and can use data from another company (source) to predict customer churn successfully. To support CCCP, the cross-company data is usually transformed to a set of similar normal distribution of target company data prior to building a CCCP model. However, it is still unclear which data transformation method is most effective in CCCP. Also, the impact of data transformation methods on CCCP model performance using different classifiers have not been comprehensively explored in the telecommunication sector. In this study, we devised a model for CCCP using data transformation methods (i.e., log, z-score, rank and box-cox) and presented not only an extensive comparison to validate the impact of these transformation methods in CCCP, but also evaluated the performance of underlying baseline classifiers (i.e., Naive Bayes (NB), K-Nearest Neighbour (KNN), Gradient Boosted Tree (GBT), Single Rule Induction (SRI) and Deep learner Neural net (DP)) for customer churn prediction in telecommunication sector using the above mentioned data transformation methods. We performed experiments on publicly available datasets related to the telecommunication sector. The results demonstrated that most of the data transformation methods (e.g., log, rank, and box-cox) improve the performance of CCCP significantly. However, the Z-Score data transformation method could not achieve better results as compared to the rest of the data transformation methods in this study. Moreover, it is also investigated that the CCCP model based on NB outperform on transformed data and DP, KNN and GBT performed on the average, while SRI classifier did not show significant results in term of the commonly used evaluation measures (i.e., probability of detection, probability of false alarm, area under the curve and g-mean).

Suggested Citation

  • Amin, Adnan & Shah, Babar & Khattak, Asad Masood & Lopes Moreira, Fernando Joaquim & Ali, Gohar & Rocha, Alvaro & Anwar, Sajid, 2019. "Cross-company customer churn prediction in telecommunication: A comparison of data transformation methods," International Journal of Information Management, Elsevier, vol. 46(C), pages 304-319.
  • Handle: RePEc:eee:ininma:v:46:y:2019:i:c:p:304-319
    DOI: 10.1016/j.ijinfomgt.2018.08.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401218305930
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2018.08.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garrido-Moreno, Aurora & Padilla-Meléndez, Antonio, 2011. "Analyzing the impact of knowledge management on CRM success: The mediating effects of organizational factors," International Journal of Information Management, Elsevier, vol. 31(5), pages 437-444.
    2. K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
    3. Emily Henriette & Mondher Feki & Imed Boughzala, 2015. "The shape of digital transformation : a systematic literature review," Post-Print hal-02387019, HAL.
    4. K.W. de Bock & D. van den Poel, 2012. "Reconciling performance and interpretability in customer churn prediction modeling using ensemble learning based on generalized additive models," Post-Print hal-00800148, HAL.
    5. Bull, Christopher, 2010. "Customer Relationship Management (CRM) systems, intermediation and disintermediation: The case of INSG," International Journal of Information Management, Elsevier, vol. 30(1), pages 94-97.
    6. Arno de Caigny & Kristof Coussement & Koen W. de Bock, 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," Post-Print hal-01741661, HAL.
    7. Reychav, Iris & Weisberg, Jacob, 2009. "Going beyond technology: Knowledge sharing as a tool for enhancing customer-oriented attitudes," International Journal of Information Management, Elsevier, vol. 29(5), pages 353-361.
    8. Emily Henriette & Mondher Feki & Imed Boughzala, 2015. "The shape of digital transformation : a systematic literature review," Grenoble Ecole de Management (Post-Print) hal-02387019, HAL.
    9. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    10. Deng, Zhaohua & Lu, Yaobin & Wei, Kwok Kee & Zhang, Jinlong, 2010. "Understanding customer satisfaction and loyalty: An empirical study of mobile instant messages in China," International Journal of Information Management, Elsevier, vol. 30(4), pages 289-300.
    11. Jean-Claude Deville & Yves Tille, 2004. "Efficient balanced sampling: The cube method," Biometrika, Biometrika Trust, vol. 91(4), pages 893-912, December.
    12. Liu, Chung-Tzer & Guo, Yi Maggie & Lee, Chia-Hui, 2011. "The effects of relationship quality and switching barriers on customer loyalty," International Journal of Information Management, Elsevier, vol. 31(1), pages 71-79.
    13. Verbeke, Wouter & Dejaeger, Karel & Martens, David & Hur, Joon & Baesens, Bart, 2012. "New insights into churn prediction in the telecommunication sector: A profit driven data mining approach," European Journal of Operational Research, Elsevier, vol. 218(1), pages 211-229.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lewlisa Saha & Hrudaya Kumar Tripathy & Tarek Gaber & Hatem El-Gohary & El-Sayed M. El-kenawy, 2023. "Deep Churn Prediction Method for Telecommunication Industry," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
    2. Kang, Yan & Chen, Peiru & Cheng, Xiao & Zhang, Shuo & Song, Songbai, 2022. "Novel hybrid machine learning framework with decomposition–transformation and identification of key modes for estimating reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 273(C).
    3. Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    4. Hugo Ribeiro & Belém Barbosa & António Carrizo Moreira & Ricardo Gouveia Rodrigues, 2024. "Determinants of churn in telecommunication services: a systematic literature review," Management Review Quarterly, Springer, vol. 74(3), pages 1327-1364, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    2. Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
    3. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    4. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    5. Arno de Caigny & Kristof Coussement & Koen de Bock, 2020. "Leveraging fine-grained transaction data for customer life event predictions," Post-Print hal-02507998, HAL.
    6. Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
    7. Szeląg, Marcin & Słowiński, Roman, 2024. "Explaining and predicting customer churn by monotonic rules induced from ordinal data," European Journal of Operational Research, Elsevier, vol. 317(2), pages 414-424.
    8. Tianyuan Zhang & Sérgio Moro & Ricardo F. Ramos, 2022. "A Data-Driven Approach to Improve Customer Churn Prediction Based on Telecom Customer Segmentation," Future Internet, MDPI, vol. 14(3), pages 1-19, March.
    9. Schaeffer, Satu Elisa & Rodriguez Sanchez, Sara Veronica, 2020. "Forecasting client retention — A machine-learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
    10. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    11. Louis Geiler & Séverine Affeldt & Mohamed Nadif, 2022. "A survey on machine learning methods for churn prediction," Post-Print hal-03824873, HAL.
    12. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    13. Bram Janssens & Matthias Bogaert & Astrid Bagué & Dirk Van den Poel, 2024. "B2Boost: instance-dependent profit-driven modelling of B2B churn," Annals of Operations Research, Springer, vol. 341(1), pages 267-293, October.
    14. Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    15. Gary Mena & Kristof Coussement & Koen W. Bock & Arno Caigny & Stefan Lessmann, 2024. "Exploiting time-varying RFM measures for customer churn prediction with deep neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 765-787, August.
    16. Van Nguyen, Truong & Zhou, Li & Chong, Alain Yee Loong & Li, Boying & Pu, Xiaodie, 2020. "Predicting customer demand for remanufactured products: A data-mining approach," European Journal of Operational Research, Elsevier, vol. 281(3), pages 543-558.
    17. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    18. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    19. Chandrasekhar Valluri & Sudhakar Raju & Vivek H. Patil, 2022. "Customer determinants of used auto loan churn: comparing predictive performance using machine learning techniques," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(3), pages 279-296, September.
    20. Haupt, Johannes & Lessmann, Stefan, 2022. "Targeting customers under response-dependent costs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 369-379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:46:y:2019:i:c:p:304-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.