IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v340y2024i2d10.1007_s10479-024-06129-8.html
   My bibliography  Save this article

Data analytics-based auditing: a case study of fraud detection in the banking context

Author

Listed:
  • Jean Robert Kala Kamdjoug

    (ESSCA School of Management)

  • Hyacinthe Djanan Sando

    (Catholic University of Central Africa)

  • Jules Raymond Kala

    (CIE-Centre de Recherche en Intelligence Artificielle)

  • Arielle Ornela Ndassi Teutio

    (Catholic University of Central Africa)

  • Sunil Tiwari

    (University of Bristol Business School, University of Bristol)

  • Samuel Fosso Wamba

    (TBS Business School)

Abstract

For a long time, decision-making in auditing was limited to a risk-oriented recommendation and consisted of the rigorous analysis of a sample of data. The new trend in the audit decision process focuses on the use of decision support systems (DSSs) founded on data analytics (DA) to better concentrate on in-depth analysis. This study examines how DA can improve the audit decision-making approach in the banking sector. We show that DA techniques can improve the quality of audit decision-making within banks and highlight the advantages associated with mastering these techniques, which results in a more effective and efficient audit of digital banking transactions. We propose an artifact-based data analytics-driven decision support system (DA-DSS) for an automatic fraud detection system supported by DA. The proposed DA-DSS artifact with a random forest classifier at its core is a promising innovation in the field of electronic transaction fraud detection. The results show that the random forest classifier can accurately classify the data generated by this artifact with an accuracy varying from 88 to 93% using transaction data collected from 2021 to 2022. Other classifiers including k-nearest neighbors (KNN) are also used, with a classification rate ranging from 66 to 88% for the same transaction datasets. These results show that the proposed DA-DSS with random forest can significantly improve auditing by reducing the time required for data analysis and increasing the results’ accuracy. Management can use the proposed artifact to enhance and speed up the decision-making process within their organization.

Suggested Citation

  • Jean Robert Kala Kamdjoug & Hyacinthe Djanan Sando & Jules Raymond Kala & Arielle Ornela Ndassi Teutio & Sunil Tiwari & Samuel Fosso Wamba, 2024. "Data analytics-based auditing: a case study of fraud detection in the banking context," Annals of Operations Research, Springer, vol. 340(2), pages 1161-1188, September.
  • Handle: RePEc:spr:annopr:v:340:y:2024:i:2:d:10.1007_s10479-024-06129-8
    DOI: 10.1007/s10479-024-06129-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06129-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06129-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:340:y:2024:i:2:d:10.1007_s10479-024-06129-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.