A Data-Driven Approach to Improve Customer Churn Prediction Based on Telecom Customer Segmentation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
- Raghuram Iyengar & Kamel Jedidi & Skander Essegaier & Peter J. Danaher, 2011. "The Impact of Tariff Structure on Customer Retention, Usage, and Profitability of Access Services," Marketing Science, INFORMS, vol. 30(5), pages 820-836, September.
- Seo, DongBack & Ranganathan, C. & Babad, Yair, 0. "Two-level model of customer retention in the US mobile telecommunications service market," Telecommunications Policy, Elsevier, vol. 32(3-4), pages 182-196, April.
- Kim, Hee-Su & Yoon, Choong-Han, 0. "Determinants of subscriber churn and customer loyalty in the Korean mobile telephony market," Telecommunications Policy, Elsevier, vol. 28(9-10), pages 751-765, October.
- Arno de Caigny & Kristof Coussement & Koen W. de Bock, 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," Post-Print hal-01741661, HAL.
- Mirjana Pejić Bach & Jasmina Pivar & Božidar Jaković, 2021. "Churn Management in Telecommunications: Hybrid Approach Using Cluster Analysis and Decision Trees," JRFM, MDPI, vol. 14(11), pages 1-25, November.
- Asimakopoulos, Grigorios & Whalley, Jason, 2017. "Market leadership, technological progress and relative performance in the mobile telecommunications industry," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 57-67.
- K.W. de Bock & D. van den Poel, 2012. "Reconciling performance and interpretability in customer churn prediction modeling using ensemble learning based on generalized additive models," Post-Print hal-00800148, HAL.
- Vishal Mahajan & Richa Misra & Renuka Mahajan, 2017. "Review on factors affecting customer churn in telecom sector," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 9(2), pages 122-144.
- Kim, Moon-Koo & Park, Myeong-Cheol & Jeong, Dong-Heon, 2004. "The effects of customer satisfaction and switching barrier on customer loyalty in Korean mobile telecommunication services," Telecommunications Policy, Elsevier, vol. 28(2), pages 145-159, March.
- Holtrop, Niels & Wieringa, Jaap E. & Gijsenberg, Maarten J. & Verhoef, Peter C., 2017. "No future without the past? Predicting churn in the face of customer privacy," International Journal of Research in Marketing, Elsevier, vol. 34(1), pages 154-172.
- De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
- Verbeke, Wouter & Dejaeger, Karel & Martens, David & Hur, Joon & Baesens, Bart, 2012. "New insights into churn prediction in the telecommunication sector: A profit driven data mining approach," European Journal of Operational Research, Elsevier, vol. 218(1), pages 211-229.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pereira, Francisco & Costa, Joana Martinho & Ramos, Ricardo & Raimundo, António, 2023. "The impact of the COVID-19 pandemic on airlines’ passenger satisfaction," Journal of Air Transport Management, Elsevier, vol. 112(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
- Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
- Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
- Arno de Caigny & Kristof Coussement & Koen de Bock, 2020. "Leveraging fine-grained transaction data for customer life event predictions," Post-Print hal-02507998, HAL.
- Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
- Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
- Amin, Adnan & Shah, Babar & Khattak, Asad Masood & Lopes Moreira, Fernando Joaquim & Ali, Gohar & Rocha, Alvaro & Anwar, Sajid, 2019. "Cross-company customer churn prediction in telecommunication: A comparison of data transformation methods," International Journal of Information Management, Elsevier, vol. 46(C), pages 304-319.
- Szeląg, Marcin & Słowiński, Roman, 2024. "Explaining and predicting customer churn by monotonic rules induced from ordinal data," European Journal of Operational Research, Elsevier, vol. 317(2), pages 414-424.
- Schaeffer, Satu Elisa & Rodriguez Sanchez, Sara Veronica, 2020. "Forecasting client retention — A machine-learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
- De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
- Guven, Faruk, 2018. "Churn and loyalty behaviour of Turkish digital natives," 29th European Regional ITS Conference, Trento 2018 184943, International Telecommunications Society (ITS).
- Bram Janssens & Matthias Bogaert & Astrid Bagué & Dirk Van den Poel, 2024. "B2Boost: instance-dependent profit-driven modelling of B2B churn," Annals of Operations Research, Springer, vol. 341(1), pages 267-293, October.
- Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
- Thomas Cadet & Sophie Larribeau & Thierry Pénard, 2012. "Network effects, Customer Satisfaction and Recommendation on the Mobile Phone Market," Economics Working Paper Archive (University of Rennes & University of Caen) 201242, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
- De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
- Uner, M.Mithat & Guven, Faruk & Cavusgil, S.Tamer, 2020. "Churn and loyalty behavior of Turkish digital natives: Empirical insights and managerial implications," Telecommunications Policy, Elsevier, vol. 44(4).
- Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
- Kirgiz, Omer Bugra & Kiygi-Calli, Meltem & Cagliyor, Sendi & El Oraiby, Maryam, 2024. "Assessing the effectiveness of OTT services, branded apps, and gamified loyalty giveaways on mobile customer churn in the telecom industry: A machine-learning approach," Telecommunications Policy, Elsevier, vol. 48(8).
- Ken Kwong-Kay Wong, 2009. "Fighting churn with rate plan right-sizing: a customer retention strategy for the wireless telecommunications industry," The Service Industries Journal, Taylor & Francis Journals, vol. 30(13), pages 2261-2271, August.
- Haupt, Johannes & Lessmann, Stefan, 2022. "Targeting customers under response-dependent costs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 369-379.
More about this item
Keywords
telecommunications; customer segmentation; data mining; targeted marketing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:3:p:94-:d:772256. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.