IDEAS home Printed from https://ideas.repec.org/r/for/ijafaa/y2006i4p43-46.html
   My bibliography  Save this item

Another Look at Forecast Accuracy Metrics for Intermittent Demand

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fang Yuan & Jiang Guo & Zhihuai Xiao & Bing Zeng & Wenqiang Zhu & Sixu Huang, 2020. "An Interval Forecasting Model Based on Phase Space Reconstruction and Weighted Least Squares Support Vector Machine for Time Series of Dissolved Gas Content in Transformer Oil," Energies, MDPI, vol. 13(7), pages 1-28, April.
  2. Schipfer, Fabian & Kranzl, Lukas & Olsson, Olle & Lamers, Patrick, 2020. "The European wood pellets for heating market - Price developments, trade and market efficiency," Energy, Elsevier, vol. 212(C).
  3. Abolghasemi, Mahdi & Tarr, Garth & Bergmeir, Christoph, 2024. "Machine learning applications in hierarchical time series forecasting: Investigating the impact of promotions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 597-615.
  4. Syntetos, Aris A. & Nikolopoulos, Konstantinos & Boylan, John E. & Fildes, Robert & Goodwin, Paul, 2009. "The effects of integrating management judgement into intermittent demand forecasts," International Journal of Production Economics, Elsevier, vol. 118(1), pages 72-81, March.
  5. Davydenko, Andrey & Fildes, Robert, 2013. "Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 510-522.
  6. Seongpil Cheon & Suk-Ju Kang, 2017. "An Electric Power Consumption Analysis System for the Installation of Electric Vehicle Charging Stations," Energies, MDPI, vol. 10(10), pages 1-13, October.
  7. Hill, Arthur V. & Zhang, Weiyong & Burch, Gerald F., 2015. "Forecasting the forecastability quotient for inventory management," International Journal of Forecasting, Elsevier, vol. 31(3), pages 651-663.
  8. Namhyun Ahn & So Yeon Jo & Suk-Ju Kang, 2019. "Constraint-Aware Electricity Consumption Estimation for Prevention of Overload by Electric Vehicle Charging Station," Energies, MDPI, vol. 12(6), pages 1-18, March.
  9. Élise Fortin & Robert W Platt & Patricia S Fontela & David L Buckeridge & Caroline Quach, 2015. "Predicting Antimicrobial Resistance Prevalence and Incidence from Indicators of Antimicrobial Use: What Is the Most Accurate Indicator for Surveillance in Intensive Care Units?," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-12, December.
  10. Heinecke, G. & Syntetos, A.A. & Wang, W., 2013. "Forecasting-based SKU classification," International Journal of Production Economics, Elsevier, vol. 143(2), pages 455-462.
  11. R H Teunter & L Duncan, 2009. "Forecasting intermittent demand: a comparative study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 321-329, March.
  12. Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
  13. Mariusz Doszyn, 2020. "Accuracy of Intermittent Demand Forecasting Systems in the Enterprise," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 912-930.
  14. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
  15. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
  16. Jeon, Yunho & Seong, Sihyeon, 2022. "Robust recurrent network model for intermittent time-series forecasting," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1415-1425.
  17. Mariusz Doszyn, 2020. "Biasedness of Forecasts Errors for Intermittent Demand Data," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 1113-1127.
  18. Jiao, Xiaoying & Chen, Jason Li & Li, Gang, 2021. "Forecasting tourism demand: Developing a general nesting spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 90(C).
  19. Tian Shi & Fei Mei & Jixiang Lu & Jinjun Lu & Yi Pan & Cheng Zhou & Jianzhang Wu & Jianyong Zheng, 2019. "Phase Space Reconstruction Algorithm and Deep Learning-Based Very Short-Term Bus Load Forecasting," Energies, MDPI, vol. 12(22), pages 1-17, November.
  20. Altay, Nezih & Litteral, Lewis A. & Rudisill, Frank, 2012. "Effects of correlation on intermittent demand forecasting and stock control," International Journal of Production Economics, Elsevier, vol. 135(1), pages 275-283.
  21. Meoli, Michele & Vismara, Silvio, 2022. "Machine-learning forecasting of successful ICOs," Journal of Economics and Business, Elsevier, vol. 121(C).
  22. Corani, Giorgio & Azzimonti, Dario & Rubattu, Nicolò, 2024. "Probabilistic reconciliation of count time series," International Journal of Forecasting, Elsevier, vol. 40(2), pages 457-469.
  23. Victor Richmond R. Jose, 2017. "Percentage and Relative Error Measures in Forecast Evaluation," Operations Research, INFORMS, vol. 65(1), pages 200-211, February.
  24. Ducharme, Corey & Agard, Bruno & Trépanier, Martin, 2021. "Forecasting a customer's Next Time Under Safety Stock," International Journal of Production Economics, Elsevier, vol. 234(C).
  25. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
  26. Emilian Dobrescu, 2014. "Attempting to Quantify the Accuracy of Complex Macroeconomic Forecasts," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-21, December.
  27. Zheng, Peijun & Zhou, Heng & Liu, Jiang & Nakanishi, Yosuke, 2023. "Interpretable building energy consumption forecasting using spectral clustering algorithm and temporal fusion transformers architecture," Applied Energy, Elsevier, vol. 349(C).
  28. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
  29. López Menéndez, Ana Jesús & Pérez Suárez, Rigoberto, 2017. "Forecasting Performance and Information Measures. Revisiting the M-Competition /Evaluación de Predicciones y Medidas de Información. Reexamen de la M-Competición," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 35, pages 299-314, Mayo.
  30. Forbes, Kevin F. & Zampelli, Ernest M., 2020. "Accuracy of wind energy forecasts in Great Britain and prospects for improvement," Utilities Policy, Elsevier, vol. 67(C).
  31. Mohamad Sakizadeh & Mohamed M. A. Mohamed & Harald Klammler, 2019. "Trend Analysis and Spatial Prediction of Groundwater Levels Using Time Series Forecasting and a Novel Spatio-Temporal Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1425-1437, March.
  32. Michel Fliess & Cédric Join & Cyril Voyant, 2018. "Prediction bands for solar energy: New short-term time series forecasting techniques," Post-Print hal-01736518, HAL.
  33. Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.
  34. Altay, Nezih & Narayanan, Arunachalam, 2022. "Forecasting in humanitarian operations: Literature review and research needs," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1234-1244.
  35. Che-Yu Hung & Chien-Chih Wang & Shi-Woei Lin & Bernard C. Jiang, 2022. "An Empirical Comparison of the Sales Forecasting Performance for Plastic Tray Manufacturing Using Missing Data," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
  36. Aras, Serkan & Hanifi Van, M., 2022. "An interpretable forecasting framework for energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 328(C).
  37. Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
  38. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
  39. Victor Richmond R. Jose, 2017. "Percentage and Relative Error Measures in Forecast Evaluation," Operations Research, INFORMS, vol. 65(1), pages 200-211, February.
  40. Sprangers, Olivier & Schelter, Sebastian & de Rijke, Maarten, 2023. "Parameter-efficient deep probabilistic forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 332-345.
  41. Dooti Roy & Gregory Vaughan & Jianan Hui & Junxian Geng, 2023. "An exploration of National Weather Service daily forecasts using R Shiny," Computational Statistics, Springer, vol. 38(3), pages 1173-1191, September.
  42. Anton A. Gerunov, 2022. "Performance of 109 Machine Learning Algorithms across Five Forecasting Tasks: Employee Behavior Modeling, Online Communication, House Pricing, IT Support and Demand Planning," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 2, pages 15-43.
  43. Patrick Urrutia & David Wren & Chrysafis Vogiatzis & Ruriko Yoshida, 2022. "SARS-CoV-2 Dissemination Using a Network of the US Counties," SN Operations Research Forum, Springer, vol. 3(2), pages 1-23, June.
  44. Altay, Nezih & Rudisill, Frank & Litteral, Lewis A., 2008. "Adapting Wright's modification of Holt's method to forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 111(2), pages 389-408, February.
  45. Jussim, Maxim, 2014. "Entwicklung eines Simulationstools zur Analyse von Prognose- und Dispositionsentscheidungen im Krankenhausbereich," Bayreuth Reports on Information Systems Management 57, University of Bayreuth, Chair of Information Systems Management.
  46. Zheng, Zhuang & Chen, Hainan & Luo, Xiaowei, 2019. "A Kalman filter-based bottom-up approach for household short-term load forecast," Applied Energy, Elsevier, vol. 250(C), pages 882-894.
  47. Li, Lechen & Meinrenken, Christoph J. & Modi, Vijay & Culligan, Patricia J., 2021. "Short-term apartment-level load forecasting using a modified neural network with selected auto-regressive features," Applied Energy, Elsevier, vol. 287(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.