IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v105y2019icp391-414.html
   My bibliography  Save this item

A comprehensive review of fuel cell-based micro-combined-heat-and-power systems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ou, Kai & Yuan, Wei-Wei & Kim, Young-Bae, 2021. "Development of optimal energy management for a residential fuel cell hybrid power system with heat recovery," Energy, Elsevier, vol. 219(C).
  2. Viviana Cigolotti & Matteo Genovese & Petronilla Fragiacomo, 2021. "Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems," Energies, MDPI, vol. 14(16), pages 1-28, August.
  3. Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
  4. Acha, Salvador & Le Brun, Niccolo & Damaskou, Maria & Fubara, Tekena Craig & Mulgundmath, Vinay & Markides, Christos N. & Shah, Nilay, 2020. "Fuel cells as combined heat and power systems in commercial buildings: A case study in the food-retail sector," Energy, Elsevier, vol. 206(C).
  5. Eichhorn Colombo, Konrad W. & Kharton, Vladislav V. & Berto, Filippo & Paltrinieri, Nicola, 2020. "Mathematical modeling and simulation of hydrogen-fueled solid oxide fuel cell system for micro-grid applications - Effect of failure and degradation on transient performance," Energy, Elsevier, vol. 202(C).
  6. d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
  7. Chul-sung Lee & Hyungjin Shin & Changi Park & Mi-Lan Park & Young Choi, 2023. "Economic Feasibility Analysis of Greenhouse–Fuel Cell Convergence Systems," Sustainability, MDPI, vol. 16(1), pages 1-14, December.
  8. Dasheng Lee & Kuan-Chung Lin, 2020. "How to Transform Sustainable Energy Technology into a Unicorn Start-Up: Technology Review and Case Study," Sustainability, MDPI, vol. 12(7), pages 1-26, April.
  9. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
  10. Song, Ke & Wang, Yimin & Ding, Yuhang & Xu, Hongjie & Mueller-Welt, Philip & Stuermlinger, Tobias & Bause, Katharina & Ehrmann, Christopher & Weinmann, Hannes W. & Schaefer, Jens & Fleischer, Juergen , 2022. "Assembly techniques for proton exchange membrane fuel cell stack: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  11. Arsalis, Alexandros & Papanastasiou, Panos & Georghiou, George E., 2022. "A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications," Renewable Energy, Elsevier, vol. 191(C), pages 943-960.
  12. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
  13. Mingfei Li & Jingjing Wang & Zhengpeng Chen & Xiuyang Qian & Chuanqi Sun & Di Gan & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2024. "A Comprehensive Review of Thermal Management in Solid Oxide Fuel Cells: Focus on Burners, Heat Exchangers, and Strategies," Energies, MDPI, vol. 17(5), pages 1-30, February.
  14. Dorel Stoica & Lucian Mihăescu & Gheorghe Lăzăroiu & George Cristian Lăzăroiu, 2024. "The Technical and Economic Aspects of Integrating Energy Sectors for Climate Neutrality," Sustainability, MDPI, vol. 16(18), pages 1-22, September.
  15. S. M. Seyed Mahmoudi & Niloufar Sarabchi & Mortaza Yari & Marc A. Rosen, 2019. "Exergy and Exergoeconomic Analyses of a Combined Power Producing System including a Proton Exchange Membrane Fuel Cell and an Organic Rankine Cycle," Sustainability, MDPI, vol. 11(12), pages 1-25, June.
  16. Eardley, Scott & Choi, Jun-Ki & Hong, Taehoon & An, Jongbaek, 2024. "Decarbonization potential of regional combined heat and power development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  17. Oluleye, Gbemi & Gandiglio, Marta & Santarelli, Massimo & Hawkes, Adam, 2021. "Pathways to commercialisation of biogas fuelled solid oxide fuel cells in European wastewater treatment plants," Applied Energy, Elsevier, vol. 282(PA).
  18. Mohammad Alboghobeish & Andrea Monforti Ferrario & Davide Pumiglia & Massimiliano Della Pietra & Stephen J. McPhail & Sergii Pylypko & Domenico Borello, 2022. "Developing an Automated Tool for Quantitative Analysis of the Deconvoluted Electrochemical Impedance Response of a Solid Oxide Fuel Cell," Energies, MDPI, vol. 15(10), pages 1-22, May.
  19. Dimitris A. Katsaprakakis & Nikos Papadakis & Efi Giannopoulou & Yiannis Yiannakoudakis & George Zidianakis & Michalis Kalogerakis & George Katzagiannakis & Eirini Dakanali & George M. Stavrakakis & A, 2023. "Rational Use of Energy in Sports Centres to Achieve Net Zero: The SAVE Project (Part A)," Energies, MDPI, vol. 16(10), pages 1-41, May.
  20. Jordi Renau & Víctor García & Luis Domenech & Pedro Verdejo & Antonio Real & Alberto Giménez & Fernando Sánchez & Antonio Lozano & Félix Barreras, 2021. "Novel Use of Green Hydrogen Fuel Cell-Based Combined Heat and Power Systems to Reduce Primary Energy Intake and Greenhouse Emissions in the Building Sector," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
  21. Jie Liu & Sung-Chul Kim & Ki-Yeol Shin, 2021. "Feasibility Study and Economic Analysis of a Fuel-Cell-Based CHP System for a Comprehensive Sports Center with an Indoor Swimming Pool," Energies, MDPI, vol. 14(20), pages 1-21, October.
  22. Alexandros Arsalis & George E. Georghiou & Panos Papanastasiou, 2022. "Recent Research Progress in Hybrid Photovoltaic–Regenerative Hydrogen Fuel Cell Microgrid Systems," Energies, MDPI, vol. 15(10), pages 1-24, May.
  23. Pavel Atănăsoae, 2020. "Technical and Economic Assessment of Micro-Cogeneration Systems for Residential Applications," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
  24. Bargiacchi, Eleonora & Antonelli, Marco & Desideri, Umberto, 2019. "A comparative assessment of Power-to-Fuel production pathways," Energy, Elsevier, vol. 183(C), pages 1253-1265.
  25. Praveen Cheekatamarla, 2022. "Role of On-Site Generation in Carbon Emissions and Utility Bill Savings under Different Electric Grid Scenarios," Energies, MDPI, vol. 15(10), pages 1-13, May.
  26. Bird, Trevor J. & Jain, Neera, 2020. "Dynamic modeling and validation of a micro-combined heat and power system with integrated thermal energy storage," Applied Energy, Elsevier, vol. 271(C).
  27. Ireneusz Pielecha & Filip Szwajca & Kinga Skobiej, 2023. "Load Capacity of Nickel–Metal Hydride Battery and Proton-Exchange-Membrane Fuel Cells in the Fuel-Cell-Hybrid-Electric-Vehicle Powertrain," Energies, MDPI, vol. 16(22), pages 1-14, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.