IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p74-d1304338.html
   My bibliography  Save this article

Economic Feasibility Analysis of Greenhouse–Fuel Cell Convergence Systems

Author

Listed:
  • Chul-sung Lee

    (Rural Research Institute, Korea Rural Community Corporation, 870, Haean-ro, Sangnok-gu, Ansan-si 15634, Gyeonggi-do, Republic of Korea)

  • Hyungjin Shin

    (Rural Research Institute, Korea Rural Community Corporation, 870, Haean-ro, Sangnok-gu, Ansan-si 15634, Gyeonggi-do, Republic of Korea)

  • Changi Park

    (Department of Rural Construction Engineering, Kongju National University, 56, Gongjudaehak-ro, Gongju-si 32588, Chungcheongnam-do, Republic of Korea)

  • Mi-Lan Park

    (Smart Farm & Architecture Project Department, Korea Rural Community Corporation, Naju-si 58327, Jeollanam-do, Republic of Korea)

  • Young Choi

    (Smart Farm & Architecture Project Department, Korea Rural Community Corporation, Naju-si 58327, Jeollanam-do, Republic of Korea)

Abstract

This study investigated the economic feasibility of introducing a new energy system, the greenhouse–fuel cell convergence system (GFCS), to a greenhouse that consumes a lot of energy. The GFCS is a concept that uses the heat generated during the power generation process to cool and heat the greenhouse, uses the emitted CO 2 as fertilizer inside the greenhouse, and sells the generated electricity. For economic evaluation, the annual energy consumption of the greenhouse was first calculated through simulation, and then the appropriate fuel cell capacity was determined. Next, a farmer-led business model and a utility-led business model were presented, and the economic feasibility of these models was evaluated for tomatoes and mangoes. The economic evaluation of the GFCS confirmed the economic feasibility by comparing it with a greenhouse equipped with a geothermal heat pump. The results of the economic evaluation revealed that the farmer-led model had a benefit–cost ratio (B/C) ranging from 0.62 to 0.65 even with government support for heat utilization facilities, which was lower than that of a typical greenhouse (1.03 to 1.06). On the other hand, the utility-led model showed high B/C ranging from 1.19 to 1.86. If the initial investment cost of the fuel cells is reduced and a government policy is appropriately supported, the GFCS can be economically applied to greenhouses.

Suggested Citation

  • Chul-sung Lee & Hyungjin Shin & Changi Park & Mi-Lan Park & Young Choi, 2023. "Economic Feasibility Analysis of Greenhouse–Fuel Cell Convergence Systems," Sustainability, MDPI, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:74-:d:1304338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/74/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/74/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arsalis, Alexandros, 2019. "A comprehensive review of fuel cell-based micro-combined-heat-and-power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 391-414.
    2. Lee, Chul-sung & Hoes, P. & Cóstola, D. & Hensen, J.L.M., 2019. "Assessing the performance potential of climate adaptive greenhouse shells," Energy, Elsevier, vol. 175(C), pages 534-545.
    3. Costantino, Andrea & Comba, Lorenzo & Sicardi, Giacomo & Bariani, Mauro & Fabrizio, Enrico, 2021. "Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation," Applied Energy, Elsevier, vol. 288(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
    2. Mingfei Li & Jingjing Wang & Zhengpeng Chen & Xiuyang Qian & Chuanqi Sun & Di Gan & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2024. "A Comprehensive Review of Thermal Management in Solid Oxide Fuel Cells: Focus on Burners, Heat Exchangers, and Strategies," Energies, MDPI, vol. 17(5), pages 1-30, February.
    3. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    4. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    5. Piotr Michalak, 2022. "Thermal—Airflow Coupling in Hourly Energy Simulation of a Building with Natural Stack Ventilation," Energies, MDPI, vol. 15(11), pages 1-18, June.
    6. Ou, Kai & Yuan, Wei-Wei & Kim, Young-Bae, 2021. "Development of optimal energy management for a residential fuel cell hybrid power system with heat recovery," Energy, Elsevier, vol. 219(C).
    7. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    8. Piotr Michalak, 2022. "Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance," Energies, MDPI, vol. 15(9), pages 1-24, April.
    9. Shekaina Justin & Wafaa Saleh & Maha M. A. Lashin & Hind Mohammed Albalawi, 2023. "Modeling of Artificial Intelligence-Based Automated Climate Control with Energy Consumption Using Optimal Ensemble Learning on a Pixel Non-Uniformity Metro System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    10. Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    11. Acha, Salvador & Le Brun, Niccolo & Damaskou, Maria & Fubara, Tekena Craig & Mulgundmath, Vinay & Markides, Christos N. & Shah, Nilay, 2020. "Fuel cells as combined heat and power systems in commercial buildings: A case study in the food-retail sector," Energy, Elsevier, vol. 206(C).
    12. Jordi Renau & Víctor García & Luis Domenech & Pedro Verdejo & Antonio Real & Alberto Giménez & Fernando Sánchez & Antonio Lozano & Félix Barreras, 2021. "Novel Use of Green Hydrogen Fuel Cell-Based Combined Heat and Power Systems to Reduce Primary Energy Intake and Greenhouse Emissions in the Building Sector," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    13. Alexandros Arsalis & George E. Georghiou & Panos Papanastasiou, 2022. "Recent Research Progress in Hybrid Photovoltaic–Regenerative Hydrogen Fuel Cell Microgrid Systems," Energies, MDPI, vol. 15(10), pages 1-24, May.
    14. Pavel Atănăsoae, 2020. "Technical and Economic Assessment of Micro-Cogeneration Systems for Residential Applications," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    15. Bargiacchi, Eleonora & Antonelli, Marco & Desideri, Umberto, 2019. "A comparative assessment of Power-to-Fuel production pathways," Energy, Elsevier, vol. 183(C), pages 1253-1265.
    16. S. M. Seyed Mahmoudi & Niloufar Sarabchi & Mortaza Yari & Marc A. Rosen, 2019. "Exergy and Exergoeconomic Analyses of a Combined Power Producing System including a Proton Exchange Membrane Fuel Cell and an Organic Rankine Cycle," Sustainability, MDPI, vol. 11(12), pages 1-25, June.
    17. Viviana Cigolotti & Matteo Genovese & Petronilla Fragiacomo, 2021. "Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems," Energies, MDPI, vol. 14(16), pages 1-28, August.
    18. Piotr Michalak, 2022. "Hourly Simulation of an Earth-to-Air Heat Exchanger in a Low-Energy Residential Building," Energies, MDPI, vol. 15(5), pages 1-23, March.
    19. Leandra Vanbaelinghem & Andrea Costantino & Florian Grassauer & Nathan Pelletier, 2024. "Alternative Heating, Ventilation, and Air Conditioning (HVAC) System Considerations for Reducing Energy Use and Emissions in Egg Industries in Temperate and Continental Climates: A Systematic Review o," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    20. Bouadila, Salwa & Baddadi, Sara & Skouri, Safa & Ayed, Rabeb, 2022. "Assessing heating and cooling needs of hydroponic sheltered system in mediterranean climate: A case study sustainable fodder production," Energy, Elsevier, vol. 261(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:74-:d:1304338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.