IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3477-d812126.html
   My bibliography  Save this article

Role of On-Site Generation in Carbon Emissions and Utility Bill Savings under Different Electric Grid Scenarios

Author

Listed:
  • Praveen Cheekatamarla

    (Oak Ridge National Laboratory, Building and Transportation Sciences Division, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA)

Abstract

Energy-efficient and sustainable technologies are necessary to lower energy and carbon footprints. Many technologies are being pursued to meet the increasing energy demand in buildings. An attractive option is efficient utilization of available energy resources, including renewables, to support current and future building energy needs while targeting grid resiliency, energy, and environmental security at an affordable cost via on-site cogeneration-based approaches. This must include energy-efficient technologies with lower greenhouse gas emissions and optimized cost, performance, and reliability. This paper presents the economic and environmental benefits associated with power technologies such as thermionics and solid oxide fuel cells. Hybrid configurations consisting of heat pumps, power systems, and renewable photovoltaics in cogeneration and trigeneration modes of operation are presented. The role of such technologies in lowering CO 2 emissions while improving energy resiliency and serving the needs of underprivileged communities is discussed. The key barriers of affordability and potential solutions for large-scale implementation of these promising technologies are reviewed. Case studies demonstrating the influence of power rating, electrical efficiency, design configuration, carbon dioxide intensity of the grid, and fuel on annual greenhouse gas emissions are presented for residential and commercial buildings.

Suggested Citation

  • Praveen Cheekatamarla, 2022. "Role of On-Site Generation in Carbon Emissions and Utility Bill Savings under Different Electric Grid Scenarios," Energies, MDPI, vol. 15(10), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3477-:d:812126
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3477/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3477/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arsalis, Alexandros, 2019. "A comprehensive review of fuel cell-based micro-combined-heat-and-power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 391-414.
    2. Praveen K. Cheekatamarla, 2021. "Decarbonization of Residential Building Energy Supply: Impact of Cogeneration System Performance on Energy, Environment, and Economics," Energies, MDPI, vol. 14(9), pages 1-22, April.
    3. González-Pino, I. & Pérez-Iribarren, E. & Campos-Celador, A. & Terés-Zubiaga, J., 2020. "Analysis of the integration of micro-cogeneration units in space heating and domestic hot water plants," Energy, Elsevier, vol. 200(C).
    4. Adam, Alexandros & Fraga, Eric S. & Brett, Dan J.L., 2018. "A modelling study for the integration of a PEMFC micro-CHP in domestic building services design," Applied Energy, Elsevier, vol. 225(C), pages 85-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Praveen Cheekatamarla & Stephen Kowalski & Ahmad Abu-Heiba & Timothy LaClair & Kyle Gluesenkamp, 2022. "Modeling and Analysis of a Thermophotovoltaic Integrated Self-Powered Furnace," Energies, MDPI, vol. 15(19), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bird, Trevor J. & Jain, Neera, 2020. "Dynamic modeling and validation of a micro-combined heat and power system with integrated thermal energy storage," Applied Energy, Elsevier, vol. 271(C).
    2. d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
    3. Mingfei Li & Jingjing Wang & Zhengpeng Chen & Xiuyang Qian & Chuanqi Sun & Di Gan & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2024. "A Comprehensive Review of Thermal Management in Solid Oxide Fuel Cells: Focus on Burners, Heat Exchangers, and Strategies," Energies, MDPI, vol. 17(5), pages 1-30, February.
    4. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    5. Yuan, Yi & Chen, Li & Lyu, Xingbao & Ning, Wenjing & Liu, Wenqi & Tao, Wen-Quan, 2024. "Modeling and optimization of a residential PEMFC-based CHP system under different operating modes," Applied Energy, Elsevier, vol. 353(PA).
    6. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    7. Jacek Kropiwnicki & Mariusz Furmanek & Andrzej Rogala, 2021. "Modular Approach for Modelling Warming up Process in Water Installations with Flow-Regulating Elements," Energies, MDPI, vol. 14(15), pages 1-17, July.
    8. Ou, Kai & Yuan, Wei-Wei & Kim, Young-Bae, 2021. "Development of optimal energy management for a residential fuel cell hybrid power system with heat recovery," Energy, Elsevier, vol. 219(C).
    9. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    10. Kotowicz, Janusz & Uchman, Wojciech, 2021. "Analysis of the integrated energy system in residential scale: Photovoltaics, micro-cogeneration and electrical energy storage," Energy, Elsevier, vol. 227(C).
    11. Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).
    12. Chul-sung Lee & Hyungjin Shin & Changi Park & Mi-Lan Park & Young Choi, 2023. "Economic Feasibility Analysis of Greenhouse–Fuel Cell Convergence Systems," Sustainability, MDPI, vol. 16(1), pages 1-14, December.
    13. Hou, Xukai & Sun, Rongfeng & Huang, Jikai & Geng, Wenguang & Li, Xiaoyan & Zhang, Xiaotong, 2024. "4E evaluation and optimization of a hybrid CCHP system integrated PEM fuel cell and adsorption chiller," Renewable Energy, Elsevier, vol. 231(C).
    14. Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    15. Acha, Salvador & Le Brun, Niccolo & Damaskou, Maria & Fubara, Tekena Craig & Mulgundmath, Vinay & Markides, Christos N. & Shah, Nilay, 2020. "Fuel cells as combined heat and power systems in commercial buildings: A case study in the food-retail sector," Energy, Elsevier, vol. 206(C).
    16. Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).
    17. Jordi Renau & Víctor García & Luis Domenech & Pedro Verdejo & Antonio Real & Alberto Giménez & Fernando Sánchez & Antonio Lozano & Félix Barreras, 2021. "Novel Use of Green Hydrogen Fuel Cell-Based Combined Heat and Power Systems to Reduce Primary Energy Intake and Greenhouse Emissions in the Building Sector," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    18. Alexandros Arsalis & George E. Georghiou & Panos Papanastasiou, 2022. "Recent Research Progress in Hybrid Photovoltaic–Regenerative Hydrogen Fuel Cell Microgrid Systems," Energies, MDPI, vol. 15(10), pages 1-24, May.
    19. Pavel Atănăsoae, 2020. "Technical and Economic Assessment of Micro-Cogeneration Systems for Residential Applications," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    20. Charifa Haouraji & Badia Mounir & Ilham Mounir & Abdelmajid Farchi, 2021. "Exploring the Relationship between Residential CO 2 Emissions, Urbanization, Economic Growth, and Residential Energy Consumption: Evidence from the North Africa Region," Energies, MDPI, vol. 14(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3477-:d:812126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.