IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v36y2011i8p2043-2051.html
   My bibliography  Save this item

Guidelines for assessment of investment cost for offshore wind generation

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
  2. Annas Fauzy & Cheng-Dar Yue & Chien-Cheng Tu & Ta-Hui Lin, 2021. "Understanding the Potential of Wind Farm Exploitation in Tropical Island Countries: A Case for Indonesia," Energies, MDPI, vol. 14(9), pages 1-26, May.
  3. Meng, Yongqing & Yan, Shuhao & Wu, Kang & Ning, Lianhui & Li, Xuan & Wang, Xiuli & Wang, Xifan, 2021. "Comparative economic analysis of low frequency AC transmission system for the integration of large offshore wind farms," Renewable Energy, Elsevier, vol. 179(C), pages 1955-1968.
  4. Chiang, Amy C. & Keoleian, Gregory A. & Moore, Michael R. & Kelly, Jarod C., 2016. "Investment cost and view damage cost of siting an offshore wind farm: A spatial analysis of Lake Michigan," Renewable Energy, Elsevier, vol. 96(PA), pages 966-976.
  5. Rodrigues, S. & Restrepo, C. & Kontos, E. & Teixeira Pinto, R. & Bauer, P., 2015. "Trends of offshore wind projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1114-1135.
  6. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
  7. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
  8. Astariz, S. & Iglesias, G., 2016. "Co-located wind and wave energy farms: Uniformly distributed arrays," Energy, Elsevier, vol. 113(C), pages 497-508.
  9. De Prada Gil, Mikel & Domínguez-García, J.L. & Díaz-González, F. & Aragüés-Peñalba, M. & Gomis-Bellmunt, Oriol, 2015. "Feasibility analysis of offshore wind power plants with DC collection grid," Renewable Energy, Elsevier, vol. 78(C), pages 467-477.
  10. Ederer, Nikolaus, 2015. "Evaluating capital and operating cost efficiency of offshore wind farms: A DEA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1034-1046.
  11. Domínguez-García, José Luis & Rogers, Daniel J. & Ugalde-Loo, Carlos E. & Liang, Jun & Gomis-Bellmunt, Oriol, 2012. "Effect of non-standard operating frequencies on the economic cost of offshore AC networks," Renewable Energy, Elsevier, vol. 44(C), pages 267-280.
  12. Nikkhah, Saman & Rabiee, Abbas, 2018. "Optimal wind power generation investment, considering voltage stability of power systems," Renewable Energy, Elsevier, vol. 115(C), pages 308-325.
  13. Christoph Wolter & Henrik Klinge Jacobsen & Lorenzo Zeni & Georgios Rogdakis & Nicolaos A. Cutululis, 2020. "Overplanting in offshore wind power plants in different regulatory regimes," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(3), May.
  14. Silvio Rodrigues & Carlos Restrepo & George Katsouris & Rodrigo Teixeira Pinto & Maryam Soleimanzadeh & Peter Bosman & Pavol Bauer, 2016. "A Multi-Objective Optimization Framework for Offshore Wind Farm Layouts and Electric Infrastructures," Energies, MDPI, vol. 9(3), pages 1-42, March.
  15. Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Co-located wave-wind farms: Economic assessment as a function of layout," Renewable Energy, Elsevier, vol. 83(C), pages 837-849.
  16. Poulsen, Thomas & Lema, Rasmus, 2017. "Is the supply chain ready for the green transformation? The case of offshore wind logistics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 758-771.
  17. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas & Bergas-Jané, Joan, 2011. "Analysis of a multi turbine offshore wind farm connected to a single large power converter operated with variable frequency," Energy, Elsevier, vol. 36(5), pages 3272-3281.
  18. Maienza, C. & Avossa, A.M. & Ricciardelli, F. & Coiro, D. & Troise, G. & Georgakis, C.T., 2020. "A life cycle cost model for floating offshore wind farms," Applied Energy, Elsevier, vol. 266(C).
  19. Madariaga, A. & de Alegría, I. Martínez & Martín, J.L. & Eguía, P. & Ceballos, S., 2012. "Current facts about offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3105-3116.
  20. Wilkie, David & Galasso, Carmine, 2020. "A probabilistic framework for offshore wind turbine loss assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 1772-1783.
  21. Paolo Trucillo & Alessandro Erto, 2023. "Sustainability Indicators for Materials and Processes," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
  22. Robert Kasner & Weronika Kruszelnicka & Patrycja Bałdowska-Witos & Józef Flizikowski & Andrzej Tomporowski, 2020. "Sustainable Wind Power Plant Modernization," Energies, MDPI, vol. 13(6), pages 1-23, March.
  23. Gao, Qiang & Yuan, Rui & Ertugrul, Nesimi & Ding, Boyin & Hayward, Jennifer A. & Li, Ye, 2023. "Analysis of energy variability and costs for offshore wind and hybrid power unit with equivalent energy storage system," Applied Energy, Elsevier, vol. 342(C).
  24. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
  25. Schwanitz, Valeria Jana & Wierling, August, 2016. "Offshore wind investments – Realism about cost developments is necessary," Energy, Elsevier, vol. 106(C), pages 170-181.
  26. Varvara Mytilinou & Estivaliz Lozano-Minguez & Athanasios Kolios, 2018. "A Framework for the Selection of Optimum Offshore Wind Farm Locations for Deployment," Energies, MDPI, vol. 11(7), pages 1-23, July.
  27. Schweizer, Joerg & Antonini, Alessandro & Govoni, Laura & Gottardi, Guido & Archetti, Renata & Supino, Enrico & Berretta, Claudia & Casadei, Carlo & Ozzi, Claudia, 2016. "Investigating the potential and feasibility of an offshore wind farm in the Northern Adriatic Sea," Applied Energy, Elsevier, vol. 177(C), pages 449-463.
  28. Christopher Kath & Weronika Nitka & Tomasz Serafin & Tomasz Weron & Przemysław Zaleski & Rafał Weron, 2020. "Balancing Generation from Renewable Energy Sources: Profitability of an Energy Trader," Energies, MDPI, vol. 13(1), pages 1-15, January.
  29. Laura, Castro-Santos & Vicente, Diaz-Casas, 2014. "Life-cycle cost analysis of floating offshore wind farms," Renewable Energy, Elsevier, vol. 66(C), pages 41-48.
  30. Flocard, Francois & Ierodiaconou, Daniel & Coghlan, Ian R., 2016. "Multi-criteria evaluation of wave energy projects on the south-east Australian coast," Renewable Energy, Elsevier, vol. 99(C), pages 80-94.
  31. Christopher Kath & Weronika Nitka & Tomasz Serafin & Tomasz Weron & Przemyslaw Zaleski & Rafal Weron, 2019. "Balancing RES generation: Profitability of an energy trader," HSC Research Reports HSC/19/07, Hugo Steinhaus Center, Wroclaw University of Technology.
  32. Liu, Hua & Høgh, Jens & Blennow, Peter & Sun, Xiufu & Zong, Yi & Chen, Ming, 2024. "Assessing fluctuating wind to hydrogen production via long-term testing of solid oxide electrolysis stacks," Applied Energy, Elsevier, vol. 361(C).
  33. Yang, Zhixue & Ren, Zhouyang & Li, Hui & Pan, Zhen & Xia, Weiyi, 2024. "A review of tidal current power generation farm planning: Methodologies, characteristics and challenges," Renewable Energy, Elsevier, vol. 220(C).
  34. Kitzing, Lena & Juul, Nina & Drud, Michael & Boomsma, Trine Krogh, 2017. "A real options approach to analyse wind energy investments under different support schemes," Applied Energy, Elsevier, vol. 188(C), pages 83-96.
  35. Gao, Qiang & Hayward, Jennifer A. & Sergiienko, Nataliia & Khan, Salman Saeed & Hemer, Mark & Ertugrul, Nesimi & Ding, Boyin, 2024. "Detailed mapping of technical capacities and economics potential of offshore wind energy: A case study in South-eastern Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  36. Lande-Sudall, D. & Stallard, T. & Stansby, P., 2019. "Co-located deployment of offshore wind turbines with tidal stream turbine arrays for improved cost of electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 492-503.
  37. Kim, Ji-Young & Oh, Ki-Yong & Kang, Keum-Seok & Lee, Jun-Shin, 2013. "Site selection of offshore wind farms around the Korean Peninsula through economic evaluation," Renewable Energy, Elsevier, vol. 54(C), pages 189-195.
  38. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
  39. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas, 2014. "Technical and economic assessment of offshore wind power plants based on variable frequency operation of clusters with a single power converter," Applied Energy, Elsevier, vol. 125(C), pages 218-229.
  40. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Techno-Economic Assessment of Wind Energy Potential at Three Locations in South Korea Using Long-Term Measured Wind Data," Energies, MDPI, vol. 10(9), pages 1-24, September.
  41. Wilkie, David & Galasso, Carmine, 2020. "Impact of climate-change scenarios on offshore wind turbine structural performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  42. Alicja Lenarczyk & Marcin Jaskólski & Paweł Bućko, 2022. "The Application of a Multi-Criteria Decision-Making for Indication of Directions of the Development of Renewable Energy Sources in the Context of Energy Policy," Energies, MDPI, vol. 15(24), pages 1-21, December.
  43. Kikuchi, Yuka & Ishihara, Takeshi, 2023. "Assessment of capital expenditure for fixed-bottom offshore wind farms using probabilistic engineering cost model," Applied Energy, Elsevier, vol. 341(C).
  44. Bains, Henna & Madariaga, Ander & Troffaes, Matthias C.M. & Kazemtabrizi, Behzad, 2020. "An economic model for offshore transmission asset planning under severe uncertainty," Renewable Energy, Elsevier, vol. 160(C), pages 1174-1184.
  45. Yang, Zhixue & Ren, Zhouyang & Li, Zhenwen & Xu, Yan & Li, Hui & Li, Wenyuan & Hu, Xiuqiong, 2022. "A comprehensive analysis method for levelized cost of energy in tidal current power generation farms," Renewable Energy, Elsevier, vol. 182(C), pages 982-991.
  46. Sadik Kucuksari & Nuh Erdogan & Umit Cali, 2019. "Impact of Electrical Topology, Capacity Factor and Line Length on Economic Performance of Offshore Wind Investments," Energies, MDPI, vol. 12(16), pages 1-21, August.
  47. Ederer, Nikolaus, 2014. "The right size matters: Investigating the offshore wind turbine market equilibrium," Energy, Elsevier, vol. 68(C), pages 910-921.
  48. Meere, Ronan & Ruddy, Jonathan & McNamara, Paul & O'Donnell, Terence, 2017. "Variable AC transmission frequencies for offshore wind farm interconnection," Renewable Energy, Elsevier, vol. 103(C), pages 321-332.
  49. Khadijah Barashid & Amr Munshi & Ahmad Alhindi, 2023. "Wind Farm Power Prediction Considering Layout and Wake Effect: Case Study of Saudi Arabia," Energies, MDPI, vol. 16(2), pages 1-22, January.
  50. Zhao, Xin-gang & Ren, Ling-zhi, 2015. "Focus on the development of offshore wind power in China: Has the golden period come?," Renewable Energy, Elsevier, vol. 81(C), pages 644-657.
  51. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Savsani, Vimal, 2017. "Estimation of technical and economic potential of offshore wind along the coast of India," Energy, Elsevier, vol. 138(C), pages 79-91.
  52. Gkeka-Serpetsidaki, Pandora & Tsoutsos, Theocharis, 2022. "A methodological framework for optimal siting of offshore wind farms: A case study on the island of Crete," Energy, Elsevier, vol. 239(PD).
  53. Byeonghyeon An & Junsoo Che & Taehun Kim & Taesik Park, 2024. "Selection of an Optimal Frequency for Offshore Wind Farms," Energies, MDPI, vol. 17(10), pages 1-20, May.
  54. Lin, Zi & Cevasco, Debora & Collu, Maurizio, 2020. "A methodology to develop reduced-order models to support the operation and maintenance of offshore wind turbines," Applied Energy, Elsevier, vol. 259(C).
  55. Şan, Murat & Akpınar, Adem & Bingölbali, Bilal & Kankal, Murat, 2021. "Geo-spatial multi-criteria evaluation of wave energy exploitation in a semi-enclosed sea," Energy, Elsevier, vol. 214(C).
  56. Woochul Nam & Ki-Yong Oh, 2020. "Mutually Complementary Measure-Correlate-Predict Method for Enhanced Long-Term Wind-Resource Assessment," Mathematics, MDPI, vol. 8(10), pages 1-20, October.
  57. Mytilinou, Varvara & Kolios, Athanasios J., 2019. "Techno-economic optimisation of offshore wind farms based on life cycle cost analysis on the UK," Renewable Energy, Elsevier, vol. 132(C), pages 439-454.
  58. Ladenburg, Jacob & Lutzeyer, Sanja, 2012. "The economics of visual disamenity reductions of offshore wind farms—Review and suggestions from an emerging field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6793-6802.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.