IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924003210.html
   My bibliography  Save this article

Assessing fluctuating wind to hydrogen production via long-term testing of solid oxide electrolysis stacks

Author

Listed:
  • Liu, Hua
  • Høgh, Jens
  • Blennow, Peter
  • Sun, Xiufu
  • Zong, Yi
  • Chen, Ming

Abstract

The Danish government plans two energy islands to collect offshore wind power for power distribution and green fuel production. Wind power is often criticized for lacking stability, which challenges downstream fuel synthesis processes. Solid oxide electrolysis cells (SOEC) are promising for green hydrogen production on a commercial scale, but the impact of fluctuating power on SOEC remains uncertain. This paper explores the feasibility of a Wind-SOEC coupled system by conducting a 2104-h durability test with the state-of-the-art Topsoe TSP-1 stack. Three periods of steady operation and two periods of dynamic operation were conducted. Wind power fluctuation was simulated during the dynamic period, and two control strategies were used to handle it. The constant flow (CF) and constant conversion (CC) strategies maintain the feedstock flow rate and conversion ratio of steam-to‑hydrogen, respectively. Compared to steady operation, the stack shows no signs of additional degradation in dynamic operation. Thus, the TSP-1 stack has been proven robust and flexible enough to handle fluctuating wind power supplies under both operation strategies. Further, stack performance during dynamic periods was compared and analyzed by removing degradation effects. Accordingly, SOEC stacks with CC control will consume less external heat than CF to maintain a heat balance. Nevertheless, SOEC systems with CF and CC control strategies may have different efficiency or hydrogen production costs. Tech-economic analyses will be needed to investigate control strategies at the system level.

Suggested Citation

  • Liu, Hua & Høgh, Jens & Blennow, Peter & Sun, Xiufu & Zong, Yi & Chen, Ming, 2024. "Assessing fluctuating wind to hydrogen production via long-term testing of solid oxide electrolysis stacks," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003210
    DOI: 10.1016/j.apenergy.2024.122938
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122938?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Yi & Hu, Xiongfeng & Gao, Jun & Han, Yu & Sun, Anwei & Zheng, Nan & Shuai, Wei & Xiao, Gang & Guo, Meiting & Ni, Meng & Xu, Haoran, 2022. "Solid oxide electrolysis cell under real fluctuating power supply with a focus on thermal stress analysis," Energy, Elsevier, vol. 261(PA).
    2. Dicorato, M. & Forte, G. & Pisani, M. & Trovato, M., 2011. "Guidelines for assessment of investment cost for offshore wind generation," Renewable Energy, Elsevier, vol. 36(8), pages 2043-2051.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikkhah, Saman & Rabiee, Abbas, 2018. "Optimal wind power generation investment, considering voltage stability of power systems," Renewable Energy, Elsevier, vol. 115(C), pages 308-325.
    2. Meng, Yongqing & Yan, Shuhao & Wu, Kang & Ning, Lianhui & Li, Xuan & Wang, Xiuli & Wang, Xifan, 2021. "Comparative economic analysis of low frequency AC transmission system for the integration of large offshore wind farms," Renewable Energy, Elsevier, vol. 179(C), pages 1955-1968.
    3. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    4. De Prada Gil, Mikel & Domínguez-García, J.L. & Díaz-González, F. & Aragüés-Peñalba, M. & Gomis-Bellmunt, Oriol, 2015. "Feasibility analysis of offshore wind power plants with DC collection grid," Renewable Energy, Elsevier, vol. 78(C), pages 467-477.
    5. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    6. Silvio Rodrigues & Carlos Restrepo & George Katsouris & Rodrigo Teixeira Pinto & Maryam Soleimanzadeh & Peter Bosman & Pavol Bauer, 2016. "A Multi-Objective Optimization Framework for Offshore Wind Farm Layouts and Electric Infrastructures," Energies, MDPI, vol. 9(3), pages 1-42, March.
    7. Sadik Kucuksari & Nuh Erdogan & Umit Cali, 2019. "Impact of Electrical Topology, Capacity Factor and Line Length on Economic Performance of Offshore Wind Investments," Energies, MDPI, vol. 12(16), pages 1-21, August.
    8. Lande-Sudall, D. & Stallard, T. & Stansby, P., 2019. "Co-located deployment of offshore wind turbines with tidal stream turbine arrays for improved cost of electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 492-503.
    9. Yang, Zhixue & Ren, Zhouyang & Li, Zhenwen & Xu, Yan & Li, Hui & Li, Wenyuan & Hu, Xiuqiong, 2022. "A comprehensive analysis method for levelized cost of energy in tidal current power generation farms," Renewable Energy, Elsevier, vol. 182(C), pages 982-991.
    10. Byeonghyeon An & Junsoo Che & Taehun Kim & Taesik Park, 2024. "Selection of an Optimal Frequency for Offshore Wind Farms," Energies, MDPI, vol. 17(10), pages 1-20, May.
    11. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas & Bergas-Jané, Joan, 2011. "Analysis of a multi turbine offshore wind farm connected to a single large power converter operated with variable frequency," Energy, Elsevier, vol. 36(5), pages 3272-3281.
    12. Kitzing, Lena & Juul, Nina & Drud, Michael & Boomsma, Trine Krogh, 2017. "A real options approach to analyse wind energy investments under different support schemes," Applied Energy, Elsevier, vol. 188(C), pages 83-96.
    13. Bains, Henna & Madariaga, Ander & Troffaes, Matthias C.M. & Kazemtabrizi, Behzad, 2020. "An economic model for offshore transmission asset planning under severe uncertainty," Renewable Energy, Elsevier, vol. 160(C), pages 1174-1184.
    14. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Savsani, Vimal, 2017. "Estimation of technical and economic potential of offshore wind along the coast of India," Energy, Elsevier, vol. 138(C), pages 79-91.
    15. Gao, Qiang & Yuan, Rui & Ertugrul, Nesimi & Ding, Boyin & Hayward, Jennifer A. & Li, Ye, 2023. "Analysis of energy variability and costs for offshore wind and hybrid power unit with equivalent energy storage system," Applied Energy, Elsevier, vol. 342(C).
    16. Robert Kasner & Weronika Kruszelnicka & Patrycja Bałdowska-Witos & Józef Flizikowski & Andrzej Tomporowski, 2020. "Sustainable Wind Power Plant Modernization," Energies, MDPI, vol. 13(6), pages 1-23, March.
    17. Paolo Trucillo & Alessandro Erto, 2023. "Sustainability Indicators for Materials and Processes," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    18. Gao, Qiang & Hayward, Jennifer A. & Sergiienko, Nataliia & Khan, Salman Saeed & Hemer, Mark & Ertugrul, Nesimi & Ding, Boyin, 2024. "Detailed mapping of technical capacities and economics potential of offshore wind energy: A case study in South-eastern Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    19. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas, 2014. "Technical and economic assessment of offshore wind power plants based on variable frequency operation of clusters with a single power converter," Applied Energy, Elsevier, vol. 125(C), pages 218-229.
    20. Astariz, S. & Iglesias, G., 2016. "Co-located wind and wave energy farms: Uniformly distributed arrays," Energy, Elsevier, vol. 113(C), pages 497-508.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.