IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics0306261919319154.html
   My bibliography  Save this article

A methodology to develop reduced-order models to support the operation and maintenance of offshore wind turbines

Author

Listed:
  • Lin, Zi
  • Cevasco, Debora
  • Collu, Maurizio

Abstract

From an operation & maintenance (O&M) point of view, it is necessary to model the aero-hydro-servo-elastic (AHSE) dynamics of each wind turbine but, on the other side, wind farms generally include hundreds of wind turbines. Simply using and linking several advanced, single wind turbine models of dynamics to represent a wind farm can be computationally prohibitive. To this end, this paper developed a reduced-order model (ROM), able to capture the relevant dynamics of the system for a specific failure, having a lower computational cost and therefore more easily scalable up to a wind farm level. First, a nonlinear AHSE model is used to derive the time-domain response of the wind turbine degrees of freedom (DOFs). The failure mode, its relevant DOF, and the relevant operational conditions during which the failure is likely to occur are identified. A linearisation of the nonlinear aero-hydro-servo-elastic-drivetrain (AHSE-DT) model is then carried out. Subsequently, a number of linear ROMs are developed based on the linear full-order system but excluding high-frequency states using the modal truncation (MT) method. For the targeted DOF (rotor torque signal) and the load cases simulated, the results from the linear ROMs showed that the blade modes are important to capture not only the DOF of extreme values, but also the DOF of high-frequency responses (above 1.5 Hz). The results from nonlinear ROMs showed that the ROM eliminating all the tower modes (rigid tower) is acceptable to capture the DOF of low-frequency response (below 0.5 Hz), as it has almost the same spectral responses as the full-order nonlinear model.

Suggested Citation

  • Lin, Zi & Cevasco, Debora & Collu, Maurizio, 2020. "A methodology to develop reduced-order models to support the operation and maintenance of offshore wind turbines," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919319154
    DOI: 10.1016/j.apenergy.2019.114228
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919319154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    2. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    3. Martin, Rebecca & Lazakis, Iraklis & Barbouchi, Sami & Johanning, Lars, 2016. "Sensitivity analysis of offshore wind farm operation and maintenance cost and availability," Renewable Energy, Elsevier, vol. 85(C), pages 1226-1236.
    4. Sarker, Bhaba R. & Faiz, Tasnim Ibn, 2017. "Minimizing transportation and installation costs for turbines in offshore wind farms," Renewable Energy, Elsevier, vol. 101(C), pages 667-679.
    5. Rezaei, Mohammad M. & Behzad, Mehdi & Haddadpour, Hassan & Moradi, Hamed, 2015. "Development of a reduced order model for nonlinear analysis of the wind turbine blade dynamics," Renewable Energy, Elsevier, vol. 76(C), pages 264-282.
    6. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    7. Gentils, Theo & Wang, Lin & Kolios, Athanasios, 2017. "Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm," Applied Energy, Elsevier, vol. 199(C), pages 187-204.
    8. Tautz-Weinert, Jannis & Yürüşen, Nurseda Y. & Melero, Julio J. & Watson, Simon J., 2019. "Sensitivity study of a wind farm maintenance decision - A performance and revenue analysis," Renewable Energy, Elsevier, vol. 132(C), pages 93-105.
    9. Wang, Feng & Chen, Jincheng & Xu, Bing & Stelson, Kim A., 2019. "Improving the reliability and energy production of large wind turbine with a digital hydrostatic drivetrain," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Dicorato, M. & Forte, G. & Pisani, M. & Trovato, M., 2011. "Guidelines for assessment of investment cost for offshore wind generation," Renewable Energy, Elsevier, vol. 36(8), pages 2043-2051.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jun & Du, Xiong & Qian, Cheng, 2021. "Lifetime improvement for wind power generation system based on optimal effectiveness of thermal management," Applied Energy, Elsevier, vol. 286(C).
    2. Han Peng & Songyin Li & Linjian Shangguan & Yisa Fan & Hai Zhang, 2023. "Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    3. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
    4. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    5. Cheng Yang & Jun Jia & Ke He & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Ming Wu & Haoyang Cui, 2023. "Comprehensive Analysis and Evaluation of the Operation and Maintenance of Offshore Wind Power Systems: A Survey," Energies, MDPI, vol. 16(14), pages 1-39, July.
    6. Vincent F. Yu & Thi Huynh Anh Le & Tai-Sheng Su & Shih-Wei Lin, 2021. "Optimal Maintenance Policy for Offshore Wind Systems," Energies, MDPI, vol. 14(19), pages 1-19, September.
    7. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Condition monitoring of wind turbine blades based on self-supervised health representation learning: A conducive technique to effective and reliable utilization of wind energy," Applied Energy, Elsevier, vol. 313(C).
    8. Zhao Song & Christoph M. Hackl & Abhinav Anand & Andre Thommessen & Jonas Petzschmann & Omar Kamel & Robert Braunbehrens & Anton Kaifel & Christian Roos & Stefan Hauptmann, 2023. "Digital Twins for the Future Power System: An Overview and a Future Perspective," Sustainability, MDPI, vol. 15(6), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    2. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    3. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2019. "Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling," Applied Energy, Elsevier, vol. 235(C), pages 1335-1350.
    4. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
    5. Jing, Bo & Qian, Zheng & Pei, Yan & Zhang, Lizhong & Yang, Tingyi, 2020. "Improving wind turbine efficiency through detection and calibration of yaw misalignment," Renewable Energy, Elsevier, vol. 160(C), pages 1217-1227.
    6. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    7. Koukoura, Sofia & Scheu, Matti Niclas & Kolios, Athanasios, 2021. "Influence of extended potential-to-functional failure intervals through condition monitoring systems on offshore wind turbine availability," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    8. Pliego Marugán, Alberto & García Márquez, Fausto Pedro & Pinar Pérez, Jesús María, 2022. "A techno-economic model for avoiding conflicts of interest between owners of offshore wind farms and maintenance suppliers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Bains, Henna & Madariaga, Ander & Troffaes, Matthias C.M. & Kazemtabrizi, Behzad, 2020. "An economic model for offshore transmission asset planning under severe uncertainty," Renewable Energy, Elsevier, vol. 160(C), pages 1174-1184.
    10. Maienza, C. & Avossa, A.M. & Ricciardelli, F. & Coiro, D. & Troise, G. & Georgakis, C.T., 2020. "A life cycle cost model for floating offshore wind farms," Applied Energy, Elsevier, vol. 266(C).
    11. Gao, Qiang & Yuan, Rui & Ertugrul, Nesimi & Ding, Boyin & Hayward, Jennifer A. & Li, Ye, 2023. "Analysis of energy variability and costs for offshore wind and hybrid power unit with equivalent energy storage system," Applied Energy, Elsevier, vol. 342(C).
    12. Cheng Yang & Jun Jia & Ke He & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Ming Wu & Haoyang Cui, 2023. "Comprehensive Analysis and Evaluation of the Operation and Maintenance of Offshore Wind Power Systems: A Survey," Energies, MDPI, vol. 16(14), pages 1-39, July.
    13. Postnikov, Ivan, 2022. "A reliability assessment of the heating from a hybrid energy source based on combined heat and power and wind power plants," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    14. Gao, Qiang & Hayward, Jennifer A. & Sergiienko, Nataliia & Khan, Salman Saeed & Hemer, Mark & Ertugrul, Nesimi & Ding, Boyin, 2024. "Detailed mapping of technical capacities and economics potential of offshore wind energy: A case study in South-eastern Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Varvara Mytilinou & Estivaliz Lozano-Minguez & Athanasios Kolios, 2018. "A Framework for the Selection of Optimum Offshore Wind Farm Locations for Deployment," Energies, MDPI, vol. 11(7), pages 1-23, July.
    16. Abel Arredondo-Galeana & Feargal Brennan, 2021. "Floating Offshore Vertical Axis Wind Turbines: Opportunities, Challenges and Way Forward," Energies, MDPI, vol. 14(23), pages 1-24, November.
    17. Soszyńska-Budny Joanna & Chmielewski Mariusz & Pioch Joanna, 2023. "Reliability of Renewable Power Generation using the Example of Offshore Wind Farms," Folia Oeconomica Stetinensia, Sciendo, vol. 23(1), pages 228-245, June.
    18. Kikuchi, Yuka & Ishihara, Takeshi, 2023. "Assessment of capital expenditure for fixed-bottom offshore wind farms using probabilistic engineering cost model," Applied Energy, Elsevier, vol. 341(C).
    19. Rinaldi, Giovanni & Garcia-Teruel, Anna & Jeffrey, Henry & Thies, Philipp R. & Johanning, Lars, 2021. "Incorporating stochastic operation and maintenance models into the techno-economic analysis of floating offshore wind farms," Applied Energy, Elsevier, vol. 301(C).
    20. Roggenburg, Michael & Esquivel-Puentes, Helber A. & Vacca, Andrea & Bocanegra Evans, Humberto & Garcia-Bravo, Jose M. & Warsinger, David M. & Ivantysynova, Monika & Castillo, Luciano, 2020. "Techno-economic analysis of a hydraulic transmission for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1194-1204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919319154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.