IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v341y2023ics0306261923002763.html
   My bibliography  Save this article

Assessment of capital expenditure for fixed-bottom offshore wind farms using probabilistic engineering cost model

Author

Listed:
  • Kikuchi, Yuka
  • Ishihara, Takeshi

Abstract

The capital expenditure (CAPEX) for the fixed-bottom offshore wind farm is assessed using a probabilistic engineering cost model and the cost reduction scenarios in Japan are analyzed. Firstly, the engineering cost model is described to assess the capital expenditure. A new export cable length model is also proposed considering the landing point distance and the vessel size model is proposed as the function of turbine rated power. The proposed engineering cost model succeeds in explaining the mechanism of the increase and decrease of CAPEX experienced in the UK. The uncertainties of model parameters are identified from the reported data and modeled by the normal distribution function. The workability is predicted using the discrete event simulation. The predicted CAPEX is then compared with the existing 30 fixed-bottom offshore wind farms in the United Kingdom. The predicted mean and standard deviation values of CAPEX show good agreement with the reported ones, while the conventional parametric model underestimates the mean value and cannot predict the standard deviation. Finally, the cost reduction scenarios and their uncertainties of offshore wind farms in Japan are analyzed using the proposed probabilistic engineering cost model. The levelized cost of wind energy reduced from 20.0 JPY/kWh to 17.0 JPY/kWh, 13.6 JPY/kWh and 10.1 JPY/kWh by the reduction of installation days using the specific installation vessel, the turbine enlargement and the improvement of operation and maintenance efficiency. The predicted supply prices for each cost reduction scenario agree well with those reported at the first auction conducted in 2021 in Japan.

Suggested Citation

  • Kikuchi, Yuka & Ishihara, Takeshi, 2023. "Assessment of capital expenditure for fixed-bottom offshore wind farms using probabilistic engineering cost model," Applied Energy, Elsevier, vol. 341(C).
  • Handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923002763
    DOI: 10.1016/j.apenergy.2023.120912
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923002763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    2. Caglayan, Dilara Gulcin & Ryberg, David Severin & Heinrichs, Heidi & Linßen, Jochen & Stolten, Detlef & Robinius, Martin, 2019. "The techno-economic potential of offshore wind energy with optimized future turbine designs in Europe," Applied Energy, Elsevier, vol. 255(C).
    3. Yuka Kikuchi & Takeshi Ishihara, 2021. "Availability and LCOE Analysis Considering Failure Rate and Downtime for Onshore Wind Turbines in Japan," Energies, MDPI, vol. 14(12), pages 1-17, June.
    4. Lacal-Arántegui, Roberto & Yusta, José M. & Domínguez-Navarro, José Antonio, 2018. "Offshore wind installation: Analysing the evidence behind improvements in installation time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 133-145.
    5. Shamsan Alsubal & Wesam Salah Alaloul & Eu Lim Shawn & M. S. Liew & Pavitirakumar Palaniappan & Muhammad Ali Musarat, 2021. "Life Cycle Cost Assessment of Offshore Wind Farm: Kudat Malaysia Case," Sustainability, MDPI, vol. 13(14), pages 1-14, July.
    6. Shields, Matt & Beiter, Philipp & Nunemaker, Jake & Cooperman, Aubryn & Duffy, Patrick, 2021. "Impacts of turbine and plant upsizing on the levelized cost of energy for offshore wind," Applied Energy, Elsevier, vol. 298(C).
    7. Dicorato, M. & Forte, G. & Pisani, M. & Trovato, M., 2011. "Guidelines for assessment of investment cost for offshore wind generation," Renewable Energy, Elsevier, vol. 36(8), pages 2043-2051.
    8. Duffy, Aidan & Hand, Maureen & Wiser, Ryan & Lantz, Eric & Dalla Riva, Alberto & Berkhout, Volker & Stenkvist, Maria & Weir, David & Lacal-Arántegui, Roberto, 2020. "Land-based wind energy cost trends in Germany, Denmark, Ireland, Norway, Sweden and the United States," Applied Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanfeng Wang & Chenghao Xu & Mengze Yu & Zhicong Huang, 2024. "Lightweight Design of Vibration Control Devices for Offshore Substations Based on Inerters," Sustainability, MDPI, vol. 16(8), pages 1-21, April.
    2. Reza Nadimi & Masahito Takahashi & Koji Tokimatsu & Mika Goto, 2024. "The Reliability and Profitability of Virtual Power Plant with Short-Term Power Market Trading and Non-Spinning Reserve Diesel Generator," Energies, MDPI, vol. 17(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pryor, Sara C. & Barthelmie, Rebecca J., 2024. "Wind shadows impact planning of large offshore wind farms," Applied Energy, Elsevier, vol. 359(C).
    2. Santhakumar, Srinivasan & Smart, Gavin & Noonan, Miriam & Meerman, Hans & Faaij, André, 2022. "Technological progress observed for fixed-bottom offshore wind in the EU and UK," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    3. Judge, Frances & McAuliffe, Fiona Devoy & Sperstad, Iver Bakken & Chester, Rachel & Flannery, Brian & Lynch, Katie & Murphy, Jimmy, 2019. "A lifecycle financial analysis model for offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 370-383.
    4. Lin, Zi & Cevasco, Debora & Collu, Maurizio, 2020. "A methodology to develop reduced-order models to support the operation and maintenance of offshore wind turbines," Applied Energy, Elsevier, vol. 259(C).
    5. Jeong, Michael & Loth, Eric & Qin, Chris & Selig, Michael & Johnson, Nick, 2024. "Aerodynamic rotor design for a 25 MW offshore downwind turbine," Applied Energy, Elsevier, vol. 353(PA).
    6. Benjamin Pakenham & Anna Ermakova & Ali Mehmanparast, 2021. "A Review of Life Extension Strategies for Offshore Wind Farms Using Techno-Economic Assessments," Energies, MDPI, vol. 14(7), pages 1-23, March.
    7. Wu, Yunna & Liu, Fangtong & Wu, Junhao & He, Jiaming & Xu, Minjia & Zhou, Jianli, 2022. "Barrier identification and analysis framework to the development of offshore wind-to-hydrogen projects," Energy, Elsevier, vol. 239(PB).
    8. Maienza, C. & Avossa, A.M. & Ricciardelli, F. & Coiro, D. & Troise, G. & Georgakis, C.T., 2020. "A life cycle cost model for floating offshore wind farms," Applied Energy, Elsevier, vol. 266(C).
    9. Gao, Qiang & Yuan, Rui & Ertugrul, Nesimi & Ding, Boyin & Hayward, Jennifer A. & Li, Ye, 2023. "Analysis of energy variability and costs for offshore wind and hybrid power unit with equivalent energy storage system," Applied Energy, Elsevier, vol. 342(C).
    10. Liu, Min & Lu, Da-Gang & Qin, Jianjun & Miao, Yi-Zhi & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2024. "Risk-informed integrated design optimization for offshore wind farm electrical systems," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    11. Gao, Qiang & Hayward, Jennifer A. & Sergiienko, Nataliia & Khan, Salman Saeed & Hemer, Mark & Ertugrul, Nesimi & Ding, Boyin, 2024. "Detailed mapping of technical capacities and economics potential of offshore wind energy: A case study in South-eastern Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    12. Vetters, Jade & Thomassen, Gwenny & Van Passel, Steven, 2024. "Sailing through end-of-life challenges: A comprehensive review for offshore wind," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    13. Nikkhah, Saman & Rabiee, Abbas, 2018. "Optimal wind power generation investment, considering voltage stability of power systems," Renewable Energy, Elsevier, vol. 115(C), pages 308-325.
    14. Christoph Wolter & Henrik Klinge Jacobsen & Lorenzo Zeni & Georgios Rogdakis & Nicolaos A. Cutululis, 2020. "Overplanting in offshore wind power plants in different regulatory regimes," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(3), May.
    15. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Techno-Economic Assessment of Wind Energy Potential at Three Locations in South Korea Using Long-Term Measured Wind Data," Energies, MDPI, vol. 10(9), pages 1-24, September.
    16. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    17. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
    18. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
    19. Farid Khazaeli Moghadam & Nils Desch, 2023. "Life Cycle Assessment of Various PMSG-Based Drivetrain Concepts for 15 MW Offshore Wind Turbines Applications," Energies, MDPI, vol. 16(3), pages 1-26, February.
    20. Rubio-Domingo, G. & Linares, P., 2021. "The future investment costs of offshore wind: An estimation based on auction results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923002763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.