IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v34y2009i6p1525-1532.html
   My bibliography  Save this item

Estimation of the mechanical energy output of the kite wind generator

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yin, Xiuxing & Zhao, Xiaowei & Zhang, Wencan, 2018. "A novel hydro-kite like energy converter for harnessing both ocean wave and current energy," Energy, Elsevier, vol. 158(C), pages 1204-1212.
  2. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  3. Cherubini, Antonello & Papini, Andrea & Vertechy, Rocco & Fontana, Marco, 2015. "Airborne Wind Energy Systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1461-1476.
  4. Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
  5. Perković, Luka & Silva, Pedro & Ban, Marko & Kranjčević, Nenad & Duić, Neven, 2013. "Harvesting high altitude wind energy for power production: The concept based on Magnus’ effect," Applied Energy, Elsevier, vol. 101(C), pages 151-160.
  6. Naik, Kartik & Vermillion, Chris, 2024. "Integrated physical design, control design, and site selection for an underwater energy-harvesting kite system," Renewable Energy, Elsevier, vol. 220(C).
  7. Bauer, Florian & Kennel, Ralph M. & Hackl, Christoph M. & Campagnolo, Filippo & Patt, Michael & Schmehl, Roland, 2018. "Drag power kite with very high lift coefficient," Renewable Energy, Elsevier, vol. 118(C), pages 290-305.
  8. Argatov, Ivan & Shafranov, Valentin, 2016. "Economic assessment of small-scale kite wind generators," Renewable Energy, Elsevier, vol. 89(C), pages 125-134.
  9. Trevisi, Filippo & Gaunaa, Mac & McWilliam, Michael, 2020. "Unified engineering models for the performance and cost of Ground-Gen and Fly-Gen crosswind Airborne Wind Energy Systems," Renewable Energy, Elsevier, vol. 162(C), pages 893-907.
  10. Lunney, E. & Ban, M. & Duic, N. & Foley, A., 2017. "A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 899-911.
  11. Goldstein, Leo, 2013. "Theoretical analysis of an airborne wind energy conversion system with a ground generator and fast motion transfer," Energy, Elsevier, vol. 55(C), pages 987-995.
  12. van der Vlugt, Rolf & Bley, Anna & Noom, Michael & Schmehl, Roland, 2019. "Quasi-steady model of a pumping kite power system," Renewable Energy, Elsevier, vol. 131(C), pages 83-99.
  13. Shahzad Ali, Qazi & Kim, Man-Hoe, 2022. "Quantifying impacts of shell augmentation on power output of airborne wind energy system at elevated heights," Energy, Elsevier, vol. 239(PA).
  14. Argatov, I. & Silvennoinen, R., 2010. "Energy conversion efficiency of the pumping kite wind generator," Renewable Energy, Elsevier, vol. 35(5), pages 1052-1060.
  15. Cristina L. Archer & Ken Caldeira, 2009. "Global Assessment of High-Altitude Wind Power," Energies, MDPI, vol. 2(2), pages 1-13, May.
  16. André F. C. Pereira & João M. M. Sousa, 2022. "A Review on Crosswind Airborne Wind Energy Systems: Key Factors for a Design Choice," Energies, MDPI, vol. 16(1), pages 1-40, December.
  17. Fagiano, L. & Schnez, S., 2017. "On the take-off of airborne wind energy systems based on rigid wings," Renewable Energy, Elsevier, vol. 107(C), pages 473-488.
  18. Coleman, J. & Ahmad, H. & Pican, E. & Toal, D., 2014. "Modelling of a synchronous offshore pumping mode airborne wind energy farm," Energy, Elsevier, vol. 71(C), pages 569-578.
  19. Dadd, George M. & Hudson, Dominic A. & Shenoi, R.A., 2011. "Determination of kite forces using three-dimensional flight trajectories for ship propulsion," Renewable Energy, Elsevier, vol. 36(10), pages 2667-2678.
  20. Paul Thedens & Roland Schmehl, 2023. "An Aero-Structural Model for Ram-Air Kite Simulations," Energies, MDPI, vol. 16(6), pages 1-18, March.
  21. Licitra, G. & Koenemann, J. & Bürger, A. & Williams, P. & Ruiterkamp, R. & Diehl, M., 2019. "Performance assessment of a rigid wing Airborne Wind Energy pumping system," Energy, Elsevier, vol. 173(C), pages 569-585.
  22. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
  23. De Lellis, M. & Mendonça, A.K. & Saraiva, R. & Trofino, A. & Lezana, Á., 2016. "Electric power generation in wind farms with pumping kites: An economical analysis," Renewable Energy, Elsevier, vol. 86(C), pages 163-172.
  24. Ban, Marko & Perković, Luka & Duić, Neven & Penedo, Ricardo, 2013. "Estimating the spatial distribution of high altitude wind energy potential in Southeast Europe," Energy, Elsevier, vol. 57(C), pages 24-29.
  25. Juliane Müller & Christine Shoemaker, 2014. "Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems," Journal of Global Optimization, Springer, vol. 60(2), pages 123-144, October.
  26. Saleem, Arslan & Kim, Man-Hoe, 2019. "Performance of buoyant shell horizontal axis wind turbine under fluctuating yaw angles," Energy, Elsevier, vol. 169(C), pages 79-91.
  27. Leloup, R. & Roncin, K. & Behrel, M. & Bles, G. & Leroux, J.-B. & Jochum, C. & Parlier, Y., 2016. "A continuous and analytical modeling for kites as auxiliary propulsion devoted to merchant ships, including fuel saving estimation," Renewable Energy, Elsevier, vol. 86(C), pages 483-496.
  28. Sridhar, Surya & Zuber, Mohammad & B., Satish Shenoy & Kumar, Amit & Ng, Eddie Y.K. & Radhakrishnan, Jayakrishnan, 2022. "Aerodynamic comparison of slotted and non-slotted diffuser casings for Diffuser Augmented Wind Turbines (DAWT)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  29. Cherubini, Antonello & Vertechy, Rocco & Fontana, Marco, 2016. "Simplified model of offshore Airborne Wind Energy Converters," Renewable Energy, Elsevier, vol. 88(C), pages 465-473.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.