IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp483-496.html
   My bibliography  Save this article

A continuous and analytical modeling for kites as auxiliary propulsion devoted to merchant ships, including fuel saving estimation

Author

Listed:
  • Leloup, R.
  • Roncin, K.
  • Behrel, M.
  • Bles, G.
  • Leroux, J.-B.
  • Jochum, C.
  • Parlier, Y.

Abstract

A performance prediction program dedicated to merchant ships was developed to assess fuel saving abilities of a kite. The solving of the parameterization presented led to kite velocities and tethers tensions prediction continuously along a flight path within the wind window, including especially wind gradient and ship velocity. Both static and dynamic flight cases were considered regarding optimization strategy for kite tow efficiency. For dynamic flight case azimuth, elevation and orientation of the trajectory are continuously optimized in the present algorithm. Magnitude orders of towing forces induced by the kite were compared to those obtained in the literature. Especially in upwind conditions, which are the most frequent point of sail for fast vessels, results are dramatically improved. Finally, using a 320 m2 kite on a 50,000 dwt tanker, the fuel saving predicted is about 10% for a wind velocity of 9.77 m s−1 (Beaufort 5) and reaches more than 50% for a wind velocity of 15.68 m s−1 (Beaufort 7).

Suggested Citation

  • Leloup, R. & Roncin, K. & Behrel, M. & Bles, G. & Leroux, J.-B. & Jochum, C. & Parlier, Y., 2016. "A continuous and analytical modeling for kites as auxiliary propulsion devoted to merchant ships, including fuel saving estimation," Renewable Energy, Elsevier, vol. 86(C), pages 483-496.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:483-496
    DOI: 10.1016/j.renene.2015.08.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115302366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.08.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Argatov, I. & Rautakorpi, P. & Silvennoinen, R., 2009. "Estimation of the mechanical energy output of the kite wind generator," Renewable Energy, Elsevier, vol. 34(6), pages 1525-1532.
    2. Dadd, George M. & Hudson, Dominic A. & Shenoi, R.A., 2011. "Determination of kite forces using three-dimensional flight trajectories for ship propulsion," Renewable Energy, Elsevier, vol. 36(10), pages 2667-2678.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Todd Chou & Vasileios Kosmas & Michele Acciaro & Katharina Renken, 2021. "A Comeback of Wind Power in Shipping: An Economic and Operational Review on the Wind-Assisted Ship Propulsion Technology," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    3. Enric Julià & Fabian Tillig & Jonas W. Ringsberg, 2020. "Concept Design and Performance Evaluation of a Fossil-Free Operated Cargo Ship with Unlimited Range," Sustainability, MDPI, vol. 12(16), pages 1-23, August.
    4. Tino Vidović & Jakov Šimunović & Gojmir Radica & Željko Penga, 2023. "Systematic Overview of Newly Available Technologies in the Green Maritime Sector," Energies, MDPI, vol. 16(2), pages 1-26, January.
    5. Orestis Schinas & Niklas Bergmann, 2021. "The Short-Term Cost of Greening the Global Fleet," Sustainability, MDPI, vol. 13(16), pages 1-32, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van der Vlugt, Rolf & Bley, Anna & Noom, Michael & Schmehl, Roland, 2019. "Quasi-steady model of a pumping kite power system," Renewable Energy, Elsevier, vol. 131(C), pages 83-99.
    2. De Lellis, M. & Mendonça, A.K. & Saraiva, R. & Trofino, A. & Lezana, Á., 2016. "Electric power generation in wind farms with pumping kites: An economical analysis," Renewable Energy, Elsevier, vol. 86(C), pages 163-172.
    3. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Cherubini, Antonello & Papini, Andrea & Vertechy, Rocco & Fontana, Marco, 2015. "Airborne Wind Energy Systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1461-1476.
    5. Lunney, E. & Ban, M. & Duic, N. & Foley, A., 2017. "A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 899-911.
    6. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    7. Ban, Marko & Perković, Luka & Duić, Neven & Penedo, Ricardo, 2013. "Estimating the spatial distribution of high altitude wind energy potential in Southeast Europe," Energy, Elsevier, vol. 57(C), pages 24-29.
    8. Paul Thedens & Roland Schmehl, 2023. "An Aero-Structural Model for Ram-Air Kite Simulations," Energies, MDPI, vol. 16(6), pages 1-18, March.
    9. Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
    10. André F. C. Pereira & João M. M. Sousa, 2022. "A Review on Crosswind Airborne Wind Energy Systems: Key Factors for a Design Choice," Energies, MDPI, vol. 16(1), pages 1-40, December.
    11. Argatov, Ivan & Shafranov, Valentin, 2016. "Economic assessment of small-scale kite wind generators," Renewable Energy, Elsevier, vol. 89(C), pages 125-134.
    12. Goldstein, Leo, 2013. "Theoretical analysis of an airborne wind energy conversion system with a ground generator and fast motion transfer," Energy, Elsevier, vol. 55(C), pages 987-995.
    13. Juliane Müller & Christine Shoemaker, 2014. "Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems," Journal of Global Optimization, Springer, vol. 60(2), pages 123-144, October.
    14. Saleem, Arslan & Kim, Man-Hoe, 2019. "Performance of buoyant shell horizontal axis wind turbine under fluctuating yaw angles," Energy, Elsevier, vol. 169(C), pages 79-91.
    15. Sridhar, Surya & Zuber, Mohammad & B., Satish Shenoy & Kumar, Amit & Ng, Eddie Y.K. & Radhakrishnan, Jayakrishnan, 2022. "Aerodynamic comparison of slotted and non-slotted diffuser casings for Diffuser Augmented Wind Turbines (DAWT)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. Naik, Kartik & Vermillion, Chris, 2024. "Integrated physical design, control design, and site selection for an underwater energy-harvesting kite system," Renewable Energy, Elsevier, vol. 220(C).
    17. Argatov, I. & Silvennoinen, R., 2010. "Energy conversion efficiency of the pumping kite wind generator," Renewable Energy, Elsevier, vol. 35(5), pages 1052-1060.
    18. Dadd, George M. & Hudson, Dominic A. & Shenoi, R.A., 2011. "Determination of kite forces using three-dimensional flight trajectories for ship propulsion," Renewable Energy, Elsevier, vol. 36(10), pages 2667-2678.
    19. Fagiano, L. & Schnez, S., 2017. "On the take-off of airborne wind energy systems based on rigid wings," Renewable Energy, Elsevier, vol. 107(C), pages 473-488.
    20. Trevisi, Filippo & Gaunaa, Mac & McWilliam, Michael, 2020. "Unified engineering models for the performance and cost of Ground-Gen and Fly-Gen crosswind Airborne Wind Energy Systems," Renewable Energy, Elsevier, vol. 162(C), pages 893-907.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:483-496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.