IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v32y2007i15p2617-2628.html
   My bibliography  Save this item

Experimental study on the performance of solar Rankine system using supercritical CO2

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Vélez, Fredy & Segovia, José & Chejne, Farid & Antolín, Gregorio & Quijano, Ana & Carmen Martín, M., 2011. "Low temperature heat source for power generation: Exhaustive analysis of a carbon dioxide transcritical power cycle," Energy, Elsevier, vol. 36(9), pages 5497-5507.
  2. Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2016. "Energy and exergy analyses of a novel power cycle using the cold of LNG (liquefied natural gas) and low-temperature solar energy," Energy, Elsevier, vol. 95(C), pages 324-345.
  3. Atif, Maimoon. & Al-Sulaiman, Fahad A., 2017. "Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 153-167.
  4. Pan, Lisheng & Li, Bo & Wei, Xiaolin & Li, Teng, 2016. "Experimental investigation on the CO2 transcritical power cycle," Energy, Elsevier, vol. 95(C), pages 247-254.
  5. Sarkar, Jahar, 2015. "Analyses and optimization of a supercritical N2O Rankine cycle for low-grade heat conversion," Energy, Elsevier, vol. 81(C), pages 344-351.
  6. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Deng, Shuai & Li, Xiaoya & Chang, Liwen, 2017. "Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat," Applied Energy, Elsevier, vol. 186(P3), pages 423-435.
  7. Li, Zhouhang & Zhai, Yuling & Bi, Dapeng & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2017. "Orientation effect in helical coils with smooth and rib-roughened wall: Toward improved gas heaters for supercritical carbon dioxide Rankine cycles," Energy, Elsevier, vol. 140(P1), pages 530-545.
  8. Hong Gao & Chao Liu & Chao He & Xiaoxiao Xu & Shuangying Wu & Yourong Li, 2012. "Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery," Energies, MDPI, vol. 5(9), pages 1-15, August.
  9. Yamada, Noboru & Minami, Takahiro & Anuar Mohamad, Md Nor, 2011. "Fundamental experiment of pumpless Rankine-type cycle for low-temperature heat recovery," Energy, Elsevier, vol. 36(2), pages 1010-1017.
  10. Xia, Guanghui & Sun, Qingxuan & Cao, Xu & Wang, Jiangfeng & Yu, Yizhao & Wang, Laisheng, 2014. "Thermodynamic analysis and optimization of a solar-powered transcritical CO2 (carbon dioxide) power cycle for reverse osmosis desalination based on the recovery of cryogenic energy of LNG (liquefied n," Energy, Elsevier, vol. 66(C), pages 643-653.
  11. Mamdouh El Haj Assad & Yashar Aryanfar & Amirreza Javaherian & Ali Khosravi & Karim Aghaei & Siamak Hosseinzadeh & Juan Pabon & SMS Mahmoudi, 2021. "Energy, exergy, economic and exergoenvironmental analyses of transcritical CO2 cycle powered by single flash geothermal power plant [Modeling of geothermal power system equipped with absorption ref," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(4), pages 1504-1518.
  12. Onder Kizilkan & Hiroshi Yamaguchi, 2020. "A feasibility study of CO2‐based solar‐assisted Rankine cycle: a comparative case study for Isparta, Turkey," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 840-854, August.
  13. Chen, Huijuan & Yogi Goswami, D. & Rahman, Muhammad M. & Stefanakos, Elias K., 2011. "Energetic and exergetic analysis of CO2- and R32-based transcritical Rankine cycles for low-grade heat conversion," Applied Energy, Elsevier, vol. 88(8), pages 2802-2808, August.
  14. Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.
  15. Pan, Lisheng & Li, Bing & Shi, Weixiu & Wei, Xiaolin, 2019. "Optimization of the self-condensing CO2 transcritical power cycle using solar thermal energy," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  16. Baik, Young-Jin & Kim, Minsung & Chang, Ki Chang & Kim, Sung Jin, 2011. "Power-based performance comparison between carbon dioxide and R125 transcritical cycles for a low-grade heat source," Applied Energy, Elsevier, vol. 88(3), pages 892-898, March.
  17. Wu, Chuang & Yan, Xiao-jiang & Wang, Shun-sen & Bai, Kun-lun & Di, Juan & Cheng, Shang-fang & Li, Jun, 2016. "System optimisation and performance analysis of CO2 transcritical power cycle for waste heat recovery," Energy, Elsevier, vol. 100(C), pages 391-400.
  18. Wang, J.L. & Zhao, L. & Wang, X.D., 2010. "A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle," Applied Energy, Elsevier, vol. 87(11), pages 3366-3373, November.
  19. Bai, Ziwei & Zhang, Guoqiang & Li, Yongyi & Xu, Gang & Yang, Yongping, 2018. "A supercritical CO2 Brayton cycle with a bleeding anabranch used in coal-fired power plants," Energy, Elsevier, vol. 142(C), pages 731-738.
  20. Wang, J.L. & Zhao, L. & Wang, X.D., 2012. "An experimental study on the recuperative low temperature solar Rankine cycle using R245fa," Applied Energy, Elsevier, vol. 94(C), pages 34-40.
  21. Shi, Lingfeng & Shu, Gequn & Tian, Hua & Huang, Guangdai & Li, Xiaoya & Chen, Tianyu & Li, Ligeng, 2018. "Experimental investigation of a CO2-based Transcritical Rankine Cycle (CTRC) for exhaust gas recovery," Energy, Elsevier, vol. 165(PB), pages 1149-1159.
  22. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
  23. Song, Yuhui & Wang, Jiangfeng & Dai, Yiping & Zhou, Enmin, 2012. "Thermodynamic analysis of a transcritical CO2 power cycle driven by solar energy with liquified natural gas as its heat sink," Applied Energy, Elsevier, vol. 92(C), pages 194-203.
  24. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
  25. Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Dang, Chaobin, 2020. "A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion," Applied Energy, Elsevier, vol. 269(C).
  26. Zhang, Xin-Rong & Zhang, Yalong & Chen, Lin, 2014. "Experimental study on solar thermal conversion based on supercritical natural convection," Renewable Energy, Elsevier, vol. 62(C), pages 610-618.
  27. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.
  28. Li, Xiaoya & Tian, Hua & Shu, Gequn & Hu, Chen & Sun, Rui & Li, Ligeng, 2018. "Effects of external perturbations on dynamic performance of carbon dioxide transcritical power cycles for truck engine waste heat recovery," Energy, Elsevier, vol. 163(C), pages 920-931.
  29. Dai, Baomin & Li, Minxia & Ma, Yitai, 2014. "Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery," Energy, Elsevier, vol. 64(C), pages 942-952.
  30. Qiao Zhao & Mounir Mecheri & Thibaut Neveux & Romain Privat & Jean-Noël Jaubert & Yann Le Moullec, 2023. "Search for the Optimal Design of a Supercritical-CO 2 Brayton Power Cycle from a Superstructure-Based Approach Implemented in a Commercial Simulation Software," Energies, MDPI, vol. 16(14), pages 1-31, July.
  31. Sun, Faming & Ikegami, Yasuyuki & Jia, Baoju, 2012. "A study on Kalina solar system with an auxiliary superheater," Renewable Energy, Elsevier, vol. 41(C), pages 210-219.
  32. Al-Sulaiman, Fahad A. & Atif, Maimoon, 2015. "Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower," Energy, Elsevier, vol. 82(C), pages 61-71.
  33. Naseri, Ali & Bidi, Mokhtar & Ahmadi, Mohammad H., 2017. "Thermodynamic and exergy analysis of a hydrogen and permeate water production process by a solar-driven transcritical CO2 power cycle with liquefied natural gas heat sink," Renewable Energy, Elsevier, vol. 113(C), pages 1215-1228.
  34. Wang, Jiangfeng & Sun, Zhixin & Dai, Yiping & Ma, Shaolin, 2010. "Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network," Applied Energy, Elsevier, vol. 87(4), pages 1317-1324, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.