Optimization of the self-condensing CO2 transcritical power cycle using solar thermal energy
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.113608
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Padilla, Ricardo Vasquez & Too, Yen Chean Soo & Benito, Regano & McNaughton, Robbie & Stein, Wes, 2016. "Thermodynamic feasibility of alternative supercritical CO2 Brayton cycles integrated with an ejector," Applied Energy, Elsevier, vol. 169(C), pages 49-62.
- Ge, Y.T. & Li, L. & Luo, X. & Tassou, S.A., 2018. "Performance evaluation of a low-grade power generation system with CO2 transcritical power cycles," Applied Energy, Elsevier, vol. 227(C), pages 220-230.
- Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
- Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
- Kim, Y.M. & Kim, C.G. & Favrat, D., 2012. "Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources," Energy, Elsevier, vol. 43(1), pages 402-415.
- Chacartegui, R. & Alovisio, A. & Ortiz, C. & Valverde, J.M. & Verda, V. & Becerra, J.A., 2016. "Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle," Applied Energy, Elsevier, vol. 173(C), pages 589-605.
- Pan, Lisheng & Ma, Yuejing & Li, Teng & Li, Huixin & Li, Bing & Wei, Xiaolin, 2019. "Investigation on the cycle performance and the combustion characteristic of two CO2-based binary mixtures for the transcritical power cycle," Energy, Elsevier, vol. 179(C), pages 454-463.
- Pan, Lisheng & Li, Bo & Wei, Xiaolin & Li, Teng, 2016. "Experimental investigation on the CO2 transcritical power cycle," Energy, Elsevier, vol. 95(C), pages 247-254.
- Zhang, Xin-Rong & Yamaguchi, Hiroshi & Uneno, Daisuke, 2007. "Experimental study on the performance of solar Rankine system using supercritical CO2," Renewable Energy, Elsevier, vol. 32(15), pages 2617-2628.
- Xu, Cheng & Zhang, Qiang & Yang, Zhiping & Li, Xiaosa & Xu, Gang & Yang, Yongping, 2018. "An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle," Applied Energy, Elsevier, vol. 231(C), pages 1319-1329.
- Le Moullec, Yann, 2013. "Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 49(C), pages 32-46.
- Wang, Kun & Li, Ming-Jia & Guo, Jia-Qi & Li, Peiwen & Liu, Zhan-Bin, 2018. "A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants," Applied Energy, Elsevier, vol. 212(C), pages 109-121.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hu, Yuankang & Deng, Zeyu & Yang, Jiaming & Hu, Yilun & Zhong, Kaifeng & Xie, Yubao & Ou, Zhihua & Guo, Shuting & Li, Xiaoning, 2024. "Performance analysis of a novel multimode electricity-cooling cogeneration system (ECCS) driven by exhaust from a marine engine," Energy, Elsevier, vol. 300(C).
- Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Liu, Zhan & Liu, Zihui & Cao, Xing & Li, Hailong & Yang, Xiaohu, 2020. "Self-condensing transcritical CO2 cogeneration system with extraction turbine and ejector refrigeration cycle: A techno-economic assessment study," Energy, Elsevier, vol. 208(C).
- Huang, Rui & Zhou, Kang & Liu, Zhan, 2022. "Reduction on the inefficiency of heat recovery storage in a compressed carbon dioxide energy storage system," Energy, Elsevier, vol. 244(PB).
- He, Jintao & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Sun, Xiaocun & Zhang, Meiyan & Yao, Yu & Shu, Gequn, 2023. "Applying artificial neural network to approximate and predict the transient dynamic behavior of CO2 combined cooling and power cycle," Energy, Elsevier, vol. 285(C).
- Muhammad, Hafiz Ali & Cho, Junhyun & Cho, Jongjae & Choi, Bongsu & Roh, Chulwoo & Ishfaq, Hafiz Ahmad & Lee, Gilbong & Shin, Hyungki & Baik, Young-Jin & Lee, Beomjoon, 2022. "Performance improvement of supercritical carbon dioxide power cycle at elevated heat sink temperatures," Energy, Elsevier, vol. 239(PD).
- Huang Rui & Zhou Kang & Pengcheng Guo & Ma Wei, 2023. "Investigation of Transcritical Carbon Dioxide Power Generation System Based on Vortex Tube," Energies, MDPI, vol. 16(9), pages 1-18, April.
- Hao, Yinping & He, Qing & Fu, Hailun & Du, Dongmei & Liu, Wenyi, 2021. "Thermal parameter optimization design of an energy storage system with CO2 as working fluid," Energy, Elsevier, vol. 230(C).
- Liya Ren & Huaixin Wang, 2020. "Optimization and Comparison of Two Combined Cycles Consisting of CO 2 and Organic Trans-Critical Cycle for Waste Heat Recovery," Energies, MDPI, vol. 13(3), pages 1-16, February.
- Daniarta, Sindu & Imre, Attila R. & Kolasiński, Piotr, 2024. "Exploring performance map: theoretical analysis of subcritical and transcritical power cycles with wet and isentropic working fluids," Energy, Elsevier, vol. 299(C).
- Pan, Lisheng & Shi, Weixiu & Wei, Xiaolin & Li, Teng & Li, Bo, 2020. "Experimental verification of the self-condensing CO2 transcritical power cycle," Energy, Elsevier, vol. 198(C).
- Liu, Zhan & Liu, Zihui & Xin, Xuan & Yang, Xiaohu, 2020. "Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis," Applied Energy, Elsevier, vol. 269(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pan, Lisheng & Shi, Weixiu & Wei, Xiaolin & Li, Teng & Li, Bo, 2020. "Experimental verification of the self-condensing CO2 transcritical power cycle," Energy, Elsevier, vol. 198(C).
- Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.
- Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2020. "Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system," Energy, Elsevier, vol. 201(C).
- Luo, Qianqian & Li, Xingchen & Luo, Lei & Du, Wei & Yan, Han, 2024. "Multi-objective performance analysis of different SCO2 Brayton cycles on hypersonic vehicles," Energy, Elsevier, vol. 301(C).
- Xu, Cheng & Zhang, Qiang & Yang, Zhiping & Li, Xiaosa & Xu, Gang & Yang, Yongping, 2018. "An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle," Applied Energy, Elsevier, vol. 231(C), pages 1319-1329.
- Onder Kizilkan & Hiroshi Yamaguchi, 2020. "A feasibility study of CO2‐based solar‐assisted Rankine cycle: a comparative case study for Isparta, Turkey," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 840-854, August.
- Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Dang, Chaobin, 2020. "A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion," Applied Energy, Elsevier, vol. 269(C).
- Guo, Jia-Qi & Li, Ming-Jia & He, Ya-Ling & Xu, Jin-Liang, 2019. "A study of new method and comprehensive evaluation on the improved performance of solar power tower plant with the CO2-based mixture cycles," Applied Energy, Elsevier, vol. 256(C).
- Xu, Jinliang & Sun, Enhui & Li, Mingjia & Liu, Huan & Zhu, Bingguo, 2018. "Key issues and solution strategies for supercritical carbon dioxide coal fired power plant," Energy, Elsevier, vol. 157(C), pages 227-246.
- Bai, Ziwei & Zhang, Guoqiang & Li, Yongyi & Xu, Gang & Yang, Yongping, 2018. "A supercritical CO2 Brayton cycle with a bleeding anabranch used in coal-fired power plants," Energy, Elsevier, vol. 142(C), pages 731-738.
- Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
- Bai, Wengang & Li, Hongzhi & Zhang, Xuwei & Qiao, Yongqiang & Zhang, Chun & Gao, Wei & Yao, Mingyu, 2022. "Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants," Energy, Elsevier, vol. 261(PB).
- Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
- Zhou, Jing & Zhu, Meng & Su, Sheng & Chen, Lei & Xu, Jun & Hu, Song & Wang, Yi & Jiang, Long & Zhong, Wenqi & Xiang, Jun, 2020. "Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 212(C).
- Ma, Yuegeng & Liu, Ming & Yan, Junjie & Liu, Jiping, 2017. "Thermodynamic study of main compression intercooling effects on supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 140(P1), pages 746-756.
- Guo, Jia-Qi & Li, Ming-Jia & Xu, Jin-Liang & Yan, Jun-Jie & Wang, Kun, 2019. "Thermodynamic performance analysis of different supercritical Brayton cycles using CO2-based binary mixtures in the molten salt solar power tower systems," Energy, Elsevier, vol. 173(C), pages 785-798.
- Kim, Sunjin & Kim, Min Soo & Kim, Minsung, 2020. "Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid," Energy, Elsevier, vol. 198(C).
- Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
- Yang, D.L. & Tang, G.H. & Sheng, Q. & Li, X.L. & Fan, Y.H. & He, Y.L. & Luo, K.H., 2023. "Effects of multiple insufficient charging and discharging on compressed carbon dioxide energy storage," Energy, Elsevier, vol. 278(PA).
More about this item
Keywords
CO2 transcritical power cycle; Supercritical CO2 Brayton cycle; Solar thermal energy; CO2 condensation;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:253:y:2019:i:c:87. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.