IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v95y2016icp247-254.html
   My bibliography  Save this article

Experimental investigation on the CO2 transcritical power cycle

Author

Listed:
  • Pan, Lisheng
  • Li, Bo
  • Wei, Xiaolin
  • Li, Teng

Abstract

CO2 has perfect environmental properties and has great potential to become a very ideal working fluid for power cycle. In the laboratory, a CO2 transcritical power cycle system was established, using a rolling piston expander. Experimental study was carried out on the operating parameters, the electric power generated and the thermal efficiency. The pump operating speed and the load resistance were used to regulate the operating parameters. The results showed that there was a sudden decrease for the electric power generated in the start-up process. The electric power rose with increasing the converter frequency. When the converter frequency kept constant, the electric current declined with increasing the load resistance. In the experimental study, the steady electric power generated could reach about 1100 W and the thermal efficiency 5.0% when the high pressure was about 11 MPa and the low pressure was about 4.6 MPa. Though the isentropic efficiency, about 21.4%, was unsatisfactory, it still has important significance for the study on CO2 expander.

Suggested Citation

  • Pan, Lisheng & Li, Bo & Wei, Xiaolin & Li, Teng, 2016. "Experimental investigation on the CO2 transcritical power cycle," Energy, Elsevier, vol. 95(C), pages 247-254.
  • Handle: RePEc:eee:energy:v:95:y:2016:i:c:p:247-254
    DOI: 10.1016/j.energy.2015.11.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215016370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.11.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xin-Rong & Yamaguchi, Hiroshi & Uneno, Daisuke, 2007. "Experimental study on the performance of solar Rankine system using supercritical CO2," Renewable Energy, Elsevier, vol. 32(15), pages 2617-2628.
    2. Kim, Y.M. & Kim, C.G. & Favrat, D., 2012. "Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources," Energy, Elsevier, vol. 43(1), pages 402-415.
    3. Madhawa Hettiarachchi, H.D. & Golubovic, Mihajlo & Worek, William M. & Ikegami, Yasuyuki, 2007. "Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources," Energy, Elsevier, vol. 32(9), pages 1698-1706.
    4. Chen, Huijuan & Yogi Goswami, D. & Rahman, Muhammad M. & Stefanakos, Elias K., 2011. "Energetic and exergetic analysis of CO2- and R32-based transcritical Rankine cycles for low-grade heat conversion," Applied Energy, Elsevier, vol. 88(8), pages 2802-2808, August.
    5. Iverson, Brian D. & Conboy, Thomas M. & Pasch, James J. & Kruizenga, Alan M., 2013. "Supercritical CO2 Brayton cycles for solar-thermal energy," Applied Energy, Elsevier, vol. 111(C), pages 957-970.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Lisheng & Li, Bing & Shi, Weixiu & Wei, Xiaolin, 2019. "Optimization of the self-condensing CO2 transcritical power cycle using solar thermal energy," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Xia, Jiaxi & Wang, Jiangfeng & Zhou, Kehan & Zhao, Pan & Dai, Yiping, 2018. "Thermodynamic and economic analysis and multi-objective optimization of a novel transcritical CO2 Rankine cycle with an ejector driven by low grade heat source," Energy, Elsevier, vol. 161(C), pages 337-351.
    4. Li, Xiaoya & Tian, Hua & Shu, Gequn & Zhao, Mingru & Markides, Christos N. & Hu, Chen, 2019. "Potential of carbon dioxide transcritical power cycle waste-heat recovery systems for heavy-duty truck engines," Applied Energy, Elsevier, vol. 250(C), pages 1581-1599.
    5. Mondal, Subha & De, Sudipta, 2017. "Power by waste heat recovery from low temperature industrial flue gas by Organic Flash Cycle (OFC) and transcritical-CO2 power cycle: A comparative study through combined thermodynamic and economic an," Energy, Elsevier, vol. 121(C), pages 832-840.
    6. Shi, Lingfeng & Shu, Gequn & Tian, Hua & Huang, Guangdai & Li, Xiaoya & Chen, Tianyu & Li, Ligeng, 2018. "Experimental investigation of a CO2-based Transcritical Rankine Cycle (CTRC) for exhaust gas recovery," Energy, Elsevier, vol. 165(PB), pages 1149-1159.
    7. Weixiu Shi & Lisheng Pan, 2019. "Optimization Study on Fluids for the Gravity-Driven Organic Power Cycle," Energies, MDPI, vol. 12(4), pages 1-19, February.
    8. Huang Rui & Zhou Kang & Pengcheng Guo & Ma Wei, 2023. "Investigation of Transcritical Carbon Dioxide Power Generation System Based on Vortex Tube," Energies, MDPI, vol. 16(9), pages 1-18, April.
    9. Pan, Lisheng & Ma, Yuejing & Li, Teng & Li, Huixin & Li, Bing & Wei, Xiaolin, 2019. "Investigation on the cycle performance and the combustion characteristic of two CO2-based binary mixtures for the transcritical power cycle," Energy, Elsevier, vol. 179(C), pages 454-463.
    10. Cao, Yue & Rattner, Alexander S. & Dai, Yiping, 2018. "Thermoeconomic analysis of a gas turbine and cascaded CO2 combined cycle using thermal oil as an intermediate heat-transfer fluid," Energy, Elsevier, vol. 162(C), pages 1253-1268.
    11. Lingfeng Shi & Gequn Shu & Hua Tian & Guangdai Huang & Liwen Chang & Tianyu Chen & Xiaoya Li, 2017. "Ideal Point Design and Operation of CO 2 -Based Transcritical Rankine Cycle (CTRC) System Based on High Utilization of Engine’s Waste Heats," Energies, MDPI, vol. 10(11), pages 1-21, October.
    12. Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Dang, Chaobin, 2020. "A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion," Applied Energy, Elsevier, vol. 269(C).
    13. Daniarta, Sindu & Imre, Attila R. & Kolasiński, Piotr, 2022. "Thermodynamic efficiency of subcritical and transcritical power cycles utilizing selected ACZ working fluids," Energy, Elsevier, vol. 254(PA).
    14. Li, Xiaoya & Tian, Hua & Shu, Gequn & Hu, Chen & Sun, Rui & Li, Ligeng, 2018. "Effects of external perturbations on dynamic performance of carbon dioxide transcritical power cycles for truck engine waste heat recovery," Energy, Elsevier, vol. 163(C), pages 920-931.
    15. Li, Huabin & Tao, Ye & Zhang, Yang & Fu, Hong, 2022. "Two-objective optimization of a hybrid solar-geothermal system with thermal energy storage for power, hydrogen and freshwater production based on transcritical CO2 cycle," Renewable Energy, Elsevier, vol. 183(C), pages 51-66.
    16. Dadpour, Daryoush & Gholizadeh, Mohammad & Estiri, Mohammad & Poncet, Sébastien, 2023. "Multi objective optimization and 3E analyses of a novel supercritical/transcritical CO2 waste heat recovery from a ship exhaust," Energy, Elsevier, vol. 278(C).
    17. Zhang, Ruiyuan & Su, Wen & Lin, Xinxing & Zhou, Naijun & Zhao, Li, 2020. "Thermodynamic analysis and parametric optimization of a novel S–CO2 power cycle for the waste heat recovery of internal combustion engines," Energy, Elsevier, vol. 209(C).
    18. Guo, Yumin & Guo, Xinru & Wang, Jiangfeng & Li, Zhanying & Cheng, Shangfang & Wang, Shunsen, 2024. "Comprehensive analysis and optimization for a novel combined heating and power system based on self-condensing transcritical CO2 Rankine cycle driven by geothermal energy from thermodynamic, exergoeco," Energy, Elsevier, vol. 300(C).
    19. Daniarta, Sindu & Imre, Attila R. & Kolasiński, Piotr, 2024. "Exploring performance map: theoretical analysis of subcritical and transcritical power cycles with wet and isentropic working fluids," Energy, Elsevier, vol. 299(C).
    20. Pan, Lisheng & Shi, Weixiu & Wei, Xiaolin & Li, Teng & Li, Bo, 2020. "Experimental verification of the self-condensing CO2 transcritical power cycle," Energy, Elsevier, vol. 198(C).
    21. Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.
    2. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    3. Dai, Baomin & Li, Minxia & Ma, Yitai, 2014. "Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery," Energy, Elsevier, vol. 64(C), pages 942-952.
    4. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Deng, Shuai & Li, Xiaoya & Chang, Liwen, 2017. "Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat," Applied Energy, Elsevier, vol. 186(P3), pages 423-435.
    5. Ge, Y.T. & Li, L. & Luo, X. & Tassou, S.A., 2018. "Performance evaluation of a low-grade power generation system with CO2 transcritical power cycles," Applied Energy, Elsevier, vol. 227(C), pages 220-230.
    6. Sarkar, Jahar, 2015. "Analyses and optimization of a supercritical N2O Rankine cycle for low-grade heat conversion," Energy, Elsevier, vol. 81(C), pages 344-351.
    7. Li, Chengyu & Wang, Huaixin, 2016. "Power cycles for waste heat recovery from medium to high temperature flue gas sources – from a view of thermodynamic optimization," Applied Energy, Elsevier, vol. 180(C), pages 707-721.
    8. Wang, J.L. & Zhao, L. & Wang, X.D., 2012. "An experimental study on the recuperative low temperature solar Rankine cycle using R245fa," Applied Energy, Elsevier, vol. 94(C), pages 34-40.
    9. Shu, Gequn & Yu, Guopeng & Tian, Hua & Wei, Haiqiao & Liang, Xingyu, 2014. "A Multi-Approach Evaluation System (MA-ES) of Organic Rankine Cycles (ORC) used in waste heat utilization," Applied Energy, Elsevier, vol. 132(C), pages 325-338.
    10. Zhao, Yongming & Zhao, Lifeng & Wang, Bo & Zhang, Shijie & Chi, Jinling & Xiao, Yunhan, 2018. "Thermodynamic analysis of a novel dual expansion coal-fueled direct-fired supercritical carbon dioxide power cycle," Applied Energy, Elsevier, vol. 217(C), pages 480-495.
    11. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    12. Li, Ligeng & Tian, Hua & Liu, Peng & Shi, Lingfeng & Shu, Gequn, 2021. "Optimization of CO2 Transcritical Power Cycle (CTPC) for engine waste heat recovery based on split concept," Energy, Elsevier, vol. 229(C).
    13. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    14. Al-Sulaiman, Fahad A. & Atif, Maimoon, 2015. "Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower," Energy, Elsevier, vol. 82(C), pages 61-71.
    15. Hong Gao & Chao Liu & Chao He & Xiaoxiao Xu & Shuangying Wu & Yourong Li, 2012. "Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery," Energies, MDPI, vol. 5(9), pages 1-15, August.
    16. Hanak, Dawid P. & Manovic, Vasilije, 2016. "Calcium looping with supercritical CO2 cycle for decarbonisation of coal-fired power plant," Energy, Elsevier, vol. 102(C), pages 343-353.
    17. Akbari, Ata D. & Mahmoudi, Seyed M.S., 2014. "Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle," Energy, Elsevier, vol. 78(C), pages 501-512.
    18. Rovira, Antonio & Muñoz, Marta & Sánchez, Consuelo & Martínez-Val, José María, 2015. "Proposal and study of a balanced hybrid Rankine–Brayton cycle for low-to-moderate temperature solar power plants," Energy, Elsevier, vol. 89(C), pages 305-317.
    19. Atif, Maimoon. & Al-Sulaiman, Fahad A., 2017. "Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 153-167.
    20. Uusitalo, Antti & Ameli, Alireza & Turunen-Saaresti, Teemu, 2019. "Thermodynamic and turbomachinery design analysis of supercritical Brayton cycles for exhaust gas heat recovery," Energy, Elsevier, vol. 167(C), pages 60-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:95:y:2016:i:c:p:247-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.