IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v110y2017icp3-39.html
   My bibliography  Save this item

Review on sorption materials and technologies for heat pumps and thermal energy storage

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Olaf Boeckmann & Drin Marmullaku & Micha Schaefer, 2024. "Dynamic Modeling and Simulation of a Facade-Integrated Adsorption System for Solar Cooling of Lightweight Buildings," Energies, MDPI, vol. 17(7), pages 1-29, April.
  2. Luigi Calabrese & Walter Mittelbach & Lucio Bonaccorsi & Angelo Freni, 2022. "An Industrial Approach for the Optimization of a New Performing Coated Adsorber for Adsorption Heat Pumps," Energies, MDPI, vol. 15(14), pages 1-14, July.
  3. Yan, T. & Wang, R.Z. & Li, T.X., 2018. "Experimental investigation on thermochemical heat storage using manganese chloride/ammonia," Energy, Elsevier, vol. 143(C), pages 562-574.
  4. N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric, 2021. "A reality check on long-term thermochemical heat storage for household applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  5. An, G.L. & Wang, L.W. & Gao, J., 2019. "Two-stage cascading desorption cycle for sorption thermal energy storage," Energy, Elsevier, vol. 174(C), pages 1091-1099.
  6. Kant, K. & Pitchumani, R., 2022. "Advances and opportunities in thermochemical heat storage systems for buildings applications," Applied Energy, Elsevier, vol. 321(C).
  7. Xue Mi & Chao Chen & Haoqi Fu & Gongcheng Li & Yongxiang Jiao & Fengtao Han, 2023. "Experimental Study on Heat Storage/Release Performances of Composite Phase Change Thermal Storage Heating Wallboards Based on Photovoltaic Electric-Thermal Systems," Energies, MDPI, vol. 16(6), pages 1-17, March.
  8. Freni, A. & Calabrese, L. & Malara, A. & Frontera, P. & Bonaccorsi, L., 2019. "Silica gel microfibres by electrospinning for adsorption chillers," Energy, Elsevier, vol. 187(C).
  9. Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
  10. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
  11. Michal Vokurka & Antonín Kunz, 2022. "Case Study of Using the Geothermal Potential of Mine Water for Central District Heating—The Rožná Deposit, Czech Republic," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
  12. Geilfuß, Kristina & Dawoud, Belal, 2020. "Analytical investigation of a zeolite-NaY-water adsorption heat and cold storage and its integration into a steam power process," Energy, Elsevier, vol. 195(C).
  13. Meir, Avishai & Offner, Avshalom & Ramon, Guy Z., 2018. "Low-temperature energy conversion using a phase-change acoustic heat engine," Applied Energy, Elsevier, vol. 231(C), pages 372-379.
  14. Benjamin Fumey & Luca Baldini, 2021. "Static Temperature Guideline for Comparative Testing of Sorption Heat Storage Systems for Building Application," Energies, MDPI, vol. 14(13), pages 1-15, June.
  15. Wu, S. & Li, T.X. & Yan, T. & Wang, R.Z., 2019. "Advanced thermochemical resorption heat transformer for high-efficiency energy storage and heat transformation," Energy, Elsevier, vol. 175(C), pages 1222-1233.
  16. Strong, Curtis & Carrier, Ye & Handan Tezel, F., 2022. "Experimental optimization of operating conditions for an open bulk-scale silica gel/water vapour adsorption energy storage system," Applied Energy, Elsevier, vol. 312(C).
  17. Anna Kulakowska & Anna Pajdak & Jaroslaw Krzywanski & Karolina Grabowska & Anna Zylka & Marcin Sosnowski & Marta Wesolowska & Karol Sztekler & Wojciech Nowak, 2020. "Effect of Metal and Carbon Nanotube Additives on the Thermal Diffusivity of a Silica Gel-Based Adsorption Bed," Energies, MDPI, vol. 13(6), pages 1-15, March.
  18. Chumnanwat, Suppanat & Watanabe, Yuto & Taniguchi, Naoko & Higashi, Hidenori & Kodama, Akio & Seto, Takafumi & Otani, Yoshio & Kumita, Mikio, 2020. "Pore structure control of anodized alumina film and sorption properties of water vapor on CaCl2-aluminum composites," Energy, Elsevier, vol. 208(C).
  19. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  20. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
  21. Bi, Yuehong & Qin, Lifeng & Guo, Jimeng & Li, Hongyan & Zang, Gaoli, 2020. "Performance analysis of solar air conditioning system based on the independent-developed solar parabolic trough collector," Energy, Elsevier, vol. 196(C).
  22. Xu, J.X. & Li, T.X. & Chao, J.W. & Yan, T.S. & Wang, R.Z., 2019. "High energy-density multi-form thermochemical energy storage based on multi-step sorption processes," Energy, Elsevier, vol. 185(C), pages 1131-1142.
  23. Oscar Banos & Sven Ohmann & Felix Alscher & Cornelia Breitkopf & Vicente Pacheco & Maja Glorius & Matthias Veit, 2020. "Systematic Analysis of Materials for Coated Adsorbers for Application in Adsorption Heat Pumps or Refrigeration Systems," Energies, MDPI, vol. 13(18), pages 1-16, September.
  24. Bennici, Simona & Dutournié, Patrick & Cathalan, Jérémy & Zbair, Mohamed & Nguyen, Minh Hoang & Scuiller, Elliot & Vaulot, Cyril, 2022. "Heat storage: Hydration investigation of MgSO4/active carbon composites, from material development to domestic applications scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  25. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
  26. Xu, S.Z. & Wang, R.Z. & Wang, L.W. & Zhu, J., 2019. "Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage," Energy, Elsevier, vol. 167(C), pages 889-901.
  27. Mikhaeil, Makram & Gaderer, Matthias & Dawoud, Belal, 2020. "On the development of an innovative adsorber plate heat exchanger for adsorption heat transformation processes; an experimental and numerical study," Energy, Elsevier, vol. 207(C).
  28. Fumey, Benjamin & Weber, Robert & Baldini, Luca, 2023. "Heat transfer constraints and performance mapping of a closed liquid sorption heat storage process," Applied Energy, Elsevier, vol. 335(C).
  29. Yıldız, Çağatay & Seçilmiş, Mustafa & Arıcı, Müslüm & Mert, Mehmet Selçuk & Nižetić, Sandro & Karabay, Hasan, 2023. "An experimental study on a solar-assisted heat pump incorporated with PCM based thermal energy storage unit," Energy, Elsevier, vol. 278(PB).
  30. Ahmed Rezk & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Hasan Demir & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Mohammad Ali Abdelkareem, 2022. "Experimental Study on Utilizing Silica Gel with Ethanol and Water for Adsorption Heat Storage," Energies, MDPI, vol. 16(1), pages 1-15, December.
  31. Böhm, Hans & Lindorfer, Johannes, 2019. "Techno-economic assessment of seasonal heat storage in district heating with thermochemical materials," Energy, Elsevier, vol. 179(C), pages 1246-1264.
  32. Andrea Frazzica & Vincenza Brancato & Belal Dawoud, 2020. "Unified Methodology to Identify the Potential Application of Seasonal Sorption Storage Technology," Energies, MDPI, vol. 13(5), pages 1-17, February.
  33. Palomba, Valeria & Dino, Giuseppe E. & Frazzica, Andrea, 2020. "Coupling sorption and compression chillers in hybrid cascade layout for efficient exploitation of renewables: Sizing, design and optimization," Renewable Energy, Elsevier, vol. 154(C), pages 11-28.
  34. Mikhail Tokarev, 2019. "A Double-Bed Adsorptive Heat Transformer for Upgrading Ambient Heat: Design and First Tests," Energies, MDPI, vol. 12(21), pages 1-14, October.
  35. Clemens Huber & Saman Setoodeh Jahromy & Christian Jordan & Manfred Schreiner & Michael Harasek & Andreas Werner & Franz Winter, 2019. "Boric Acid: A High Potential Candidate for Thermochemical Energy Storage," Energies, MDPI, vol. 12(6), pages 1-17, March.
  36. Lucio Bonaccorsi & Antonio Fotia & Angela Malara & Patrizia Frontera, 2020. "Advanced Adsorbent Materials for Waste Energy Recovery," Energies, MDPI, vol. 13(17), pages 1-15, August.
  37. Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  38. Gao, J. & Wang, L.W. & An, G.L. & Liu, J.Y. & Xu, S.Z., 2018. "Performance analysis of multi-salt sorbents without sorption hysteresis for low-grade heat recovery," Renewable Energy, Elsevier, vol. 118(C), pages 718-726.
  39. Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  40. Chen, Tingting & Xue, Bing & He, Xiaoran & Wei, Ruixun & Li, Guangyao, 2024. "Water-free surface silanization on composite zeolite 13X/MgSO4 in a direct-contact adsorption heat pump for stable steam generation," Renewable Energy, Elsevier, vol. 221(C).
  41. Dias, João M.S. & Costa, Vítor A.F., 2018. "Adsorption heat pumps for heating applications: A review of current state, literature gaps and development challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 317-327.
  42. Yang, Jiangming & Wu, Huijun & Xu, Xinhua & Huang, Gongsheng & Xu, Tao & Guo, Sitong & Liang, Yuying, 2019. "Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency," Renewable Energy, Elsevier, vol. 138(C), pages 445-457.
  43. Treier, Matthias S. & Desai, Aditya & Schmidt, Ferdinand P., 2020. "Comparison of storage density and efficiency for cascading adsorption heat storage and sorption assisted water storage," Energy, Elsevier, vol. 194(C).
  44. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.