IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v102y2017ipbp417-432.html
   My bibliography  Save this item

Energy and economic analysis of a water scrubbing based biogas upgrading process for biomethane injection into the gas grid or use as transportation fuel

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Stürmer, Bernhard & Novakovits, Philipp & Luidolt, Alexander & Zweiler, Richard, 2019. "Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region," Renewable Energy, Elsevier, vol. 130(C), pages 920-929.
  2. Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  3. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
  4. Idiano D’Adamo & Claudio Sassanelli, 2022. "Biomethane Community: A Research Agenda towards Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
  5. Kathrin Bienert & Britt Schumacher & Martín Rojas Arboleda & Eric Billig & Samiksha Shakya & Gustav Rogstrand & Marcin Zieliński & Marcin Dębowski, 2019. "Multi-Indicator Assessment of Innovative Small-Scale Biomethane Technologies in Europe," Energies, MDPI, vol. 12(7), pages 1-32, April.
  6. Ardolino, F. & Cardamone, G.F. & Parrillo, F. & Arena, U., 2021. "Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  7. Oliver Grasham & Valerie Dupont & Timothy Cockerill & Miller Alonso Camargo-Valero, 2022. "Ammonia and Biogas from Anaerobic and Sewage Digestion for Novel Heat, Power and Transport Applications—A Techno-Economic and GHG Emissions Study for the United Kingdom," Energies, MDPI, vol. 15(6), pages 1-23, March.
  8. Wantz, Eliot & Lemonnier, Mathis & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2023. "Innovative high-pressure water scrubber for biogas upgrading at farm-scale using vacuum for water regeneration," Applied Energy, Elsevier, vol. 350(C).
  9. Abd, Ammar Ali & Othman, Mohd Roslee & Helwani, Zuchra & Kim, Jinsoo, 2023. "Waste to wheels: Performance comparison between pressure swing adsorption and amine-absorption technologies for upgrading biogas containing hydrogen sulfide to fuel grade standards," Energy, Elsevier, vol. 272(C).
  10. Bedoić, Robert & Jurić, Filip & Ćosić, Boris & Pukšec, Tomislav & Čuček, Lidija & Duić, Neven, 2020. "Beyond energy crops and subsidised electricity – A study on sustainable biogas production and utilisation in advanced energy markets," Energy, Elsevier, vol. 201(C).
  11. Tsapekos, Panagiotis & Khoshnevisan, Benyamin & Alvarado-Morales, Merlin & Zhu, Xinyu & Pan, Junting & Tian, Hailin & Angelidaki, Irini, 2021. "Upcycling the anaerobic digestion streams in a bioeconomy approach: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  12. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  13. Grzegorz Piechota & Bartłomiej Igliński, 2021. "Biomethane in Poland—Current Status, Potential, Perspective and Development," Energies, MDPI, vol. 14(6), pages 1-32, March.
  14. Mancini, G. & Luciano, A. & Bolzonella, D. & Fatone, F. & Viotti, P. & Fino, D., 2021. "A water-waste-energy nexus approach to bridge the sustainability gap in landfill-based waste management regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  15. Bose, A. & O'Shea, R. & Lin, R. & Long, A. & Rajendran, K. & Wall, D. & De, S. & Murphy, J.D., 2022. "Evaluation of a biomethane, food and biofertiliser polygeneration system in a circular economy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
  16. Barbera, Elena & Menegon, Silvia & Banzato, Donatella & D'Alpaos, Chiara & Bertucco, Alberto, 2019. "From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context," Renewable Energy, Elsevier, vol. 135(C), pages 663-673.
  17. Cavaignac, Renata S. & Ferreira, Newton L. & Guardani, Roberto, 2021. "Techno-economic and environmental process evaluation of biogas upgrading via amine scrubbing," Renewable Energy, Elsevier, vol. 171(C), pages 868-880.
  18. Gao, Shida & Bo, Cuimei & Li, Jun & Niu, Chao & Lu, Xiaohua, 2020. "Multi-objective optimization and dynamic control of biogas pressurized water scrubbing process," Renewable Energy, Elsevier, vol. 147(P1), pages 2335-2344.
  19. Robert White & Freddy Segundo Navarro-Pineda & Timothy Cockerill & Valerie Dupont & Julio César Sacramento Rivero, 2019. "Techno-Economic and Life Cycle Impacts Analysis of Direct Methanation of Glycerol to Bio-Synthetic Natural Gas at a Biodiesel Refinery," Energies, MDPI, vol. 12(4), pages 1-20, February.
  20. Mohd Idris, Muhammad Nurariffudin & Hashim, Haslenda & Leduc, Sylvain & Yowargana, Ping & Kraxner, Florian & Woon, Kok Sin, 2021. "Deploying bioenergy for decarbonizing Malaysian energy sectors and alleviating renewable energy poverty," Energy, Elsevier, vol. 232(C).
  21. Noussan, Michel & Negro, Viviana & Prussi, Matteo & Chiaramonti, David, 2024. "The potential role of biomethane for the decarbonization of transport: An analysis of 2030 scenarios in Italy," Applied Energy, Elsevier, vol. 355(C).
  22. D’Adamo, Idiano & Falcone, Pasquale Marcello & Huisingh, Donald & Morone, Piergiuseppe, 2021. "A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond?," Renewable Energy, Elsevier, vol. 163(C), pages 1660-1672.
  23. Solé, Jordi & García-Olivares, Antonio & Turiel, Antonio & Ballabrera-Poy, Joaquim, 2018. "Renewable transitions and the net energy from oil liquids: A scenarios study," Renewable Energy, Elsevier, vol. 116(PA), pages 258-271.
  24. Mohd Idris, Muhammad Nurariffudin & Leduc, Sylvain & Yowargana, Ping & Hashim, Haslenda & Kraxner, Florian, 2021. "Spatio-temporal assessment of the impact of intensive palm oil-based bioenergy deployment on cross-sectoral energy decarbonization," Applied Energy, Elsevier, vol. 285(C).
  25. Furtado Amaral, Andre & Previtali, Daniele & Bassani, Andrea & Italiano, Cristina & Palella, Alessandra & Pino, Lidia & Vita, Antonio & Bozzano, Giulia & Pirola, Carlo & Manenti, Flavio, 2020. "Biogas beyond CHP: The HPC (heat, power & chemicals) process," Energy, Elsevier, vol. 203(C).
  26. Cavana, Marco & Mazza, Andrea & Chicco, Gianfranco & Leone, Pierluigi, 2021. "Electrical and gas networks coupling through hydrogen blending under increasing distributed photovoltaic generation," Applied Energy, Elsevier, vol. 290(C).
  27. Rajendran, Karthik & Browne, James D. & Murphy, Jerry D., 2019. "What is the level of incentivisation required for biomethane upgrading technologies with carbon capture and reuse?," Renewable Energy, Elsevier, vol. 133(C), pages 951-963.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.