IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v290y2021ics0306261921002713.html
   My bibliography  Save this article

Electrical and gas networks coupling through hydrogen blending under increasing distributed photovoltaic generation

Author

Listed:
  • Cavana, Marco
  • Mazza, Andrea
  • Chicco, Gianfranco
  • Leone, Pierluigi

Abstract

Electricity and gas infrastructure coupling has the twofold effect of solving production-consumption mismatches and decarbonizing the natural gas system through power-to-gas technologies producing hydrogen to be injected within the gas network. However, little is known on how this may impact the gas network operation, especially at a local level. This paper aims to fill this gap by presenting a methodology for modeling the interactions between electricity and gas distribution networks through the implementation of their physical models. A scenario of increasing penetration of distributed photovoltaic production is considered for a sample urban area. Whenever photovoltaic production exceeds the urban area consumption, hydrogen is produced and injected into the gas network. 24 injection scenarios were examined and compared to evaluate their impacts on fluid-dynamics and the quality of gas blends. Results show possible bottlenecks against hydrogen injection caused by the gas network. During summertime operations and in the cases of injection following directly the solar over-production, the hydrogen share peaks 20–30% already in the scenario of 40% solar penetration, generating unacceptable blends. These gas quality perturbations are considerably reduced when hydrogen is injected constantly throughout the day. The choice of the injection node also contributes to perturbation reduction. Sector coupling through hydrogen blending results in a complex interplay between renewable energy excess and local gas network availability which can be enhanced by buffer storage solutions and proper choice of injection node. In the framework of integrated and multi-gas systems, combined simulation tools are necessary to evaluate sector-coupling opportunities case-by-case.

Suggested Citation

  • Cavana, Marco & Mazza, Andrea & Chicco, Gianfranco & Leone, Pierluigi, 2021. "Electrical and gas networks coupling through hydrogen blending under increasing distributed photovoltaic generation," Applied Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002713
    DOI: 10.1016/j.apenergy.2021.116764
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921002713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Gui-Xiong & Yan, Hua-guang & Chen, Lei & Tao, Wen-Quan, 2020. "Economic dispatch analysis of regional Electricity–Gas system integrated with distributed gas injection," Energy, Elsevier, vol. 201(C).
    2. Lo Basso, Gianluigi & Nastasi, Benedetto & Astiaso Garcia, Davide & Cumo, Fabrizio, 2017. "How to handle the Hydrogen enriched Natural Gas blends in combustion efficiency measurement procedure of conventional and condensing boilers," Energy, Elsevier, vol. 123(C), pages 615-636.
    3. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    4. Guandalini, Giulio & Colbertaldo, Paolo & Campanari, Stefano, 2017. "Dynamic modeling of natural gas quality within transport pipelines in presence of hydrogen injections," Applied Energy, Elsevier, vol. 185(P2), pages 1712-1723.
    5. Kwabena Addo Pambour & Rostand Tresor Sopgwi & Bri-Mathias Hodge & Carlo Brancucci, 2018. "The Value of Day-Ahead Coordination of Power and Natural Gas Network Operations," Energies, MDPI, vol. 11(7), pages 1-23, June.
    6. Zeng, Qing & Fang, Jiakun & Li, Jinghua & Chen, Zhe, 2016. "Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion," Applied Energy, Elsevier, vol. 184(C), pages 1483-1492.
    7. Chaczykowski, Maciej & Zarodkiewicz, Paweł, 2017. "Simulation of natural gas quality distribution for pipeline systems," Energy, Elsevier, vol. 134(C), pages 681-698.
    8. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    9. Mazza, Andrea & Bompard, Ettore & Chicco, Gianfranco, 2018. "Applications of power to gas technologies in emerging electrical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 794-806.
    10. Rotunno, Paolo & Lanzini, Andrea & Leone, Pierluigi, 2017. "Energy and economic analysis of a water scrubbing based biogas upgrading process for biomethane injection into the gas grid or use as transportation fuel," Renewable Energy, Elsevier, vol. 102(PB), pages 417-432.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & de Santoli, Livio, 2022. "Can the renewable energy share increase in electricity and gas grids takes out the competitiveness of gas-driven CHP plants for distributed generation?," Energy, Elsevier, vol. 256(C).
    2. Lamioni, Rachele & Bronzoni, Cristiana & Folli, Marco & Tognotti, Leonardo & Galletti, Chiara, 2022. "Feeding H2-admixtures to domestic condensing boilers: Numerical simulations of combustion and pollutant formation in multi-hole burners," Applied Energy, Elsevier, vol. 309(C).
    3. Li, Fei & Wang, Dong & Guo, Hengdao & Zhang, Jianhua, 2024. "Distributionally Robust Optimization for integrated energy system accounting for refinement utilization of hydrogen and ladder-type carbon trading mechanism," Applied Energy, Elsevier, vol. 367(C).
    4. Romeo, Luis M. & Cavana, Marco & Bailera, Manuel & Leone, Pierluigi & Peña, Begoña & Lisbona, Pilar, 2022. "Non-stoichiometric methanation as strategy to overcome the limitations of green hydrogen injection into the natural gas grid," Applied Energy, Elsevier, vol. 309(C).
    5. Adrian Neacsa & Cristian Nicolae Eparu & Cașen Panaitescu & Doru Bogdan Stoica & Bogdan Ionete & Alina Prundurel & Sorin Gal, 2023. "Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society," Energies, MDPI, vol. 16(15), pages 1-38, August.
    6. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    7. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Ricciardi, Guido & de Santoli, Livio, 2022. "Synergies between Power-to-Heat and Power-to-Gas in renewable energy communities," Renewable Energy, Elsevier, vol. 198(C), pages 1383-1397.
    8. Saedi, Isam & Mhanna, Sleiman & Mancarella, Pierluigi, 2021. "Integrated electricity and gas system modelling with hydrogen injections and gas composition tracking," Applied Energy, Elsevier, vol. 303(C).
    9. Devinder Mahajan & Kun Tan & T. Venkatesh & Pradheep Kileti & Clive R. Clayton, 2022. "Hydrogen Blending in Gas Pipeline Networks—A Review," Energies, MDPI, vol. 15(10), pages 1-32, May.
    10. Andrea Ademollo & Carlo Carcasci & Albana Ilo, 2024. "Behavior of the Electricity and Gas Grids When Injecting Synthetic Natural Gas Produced with Electricity Surplus of Rooftop PVs," Sustainability, MDPI, vol. 16(22), pages 1-32, November.
    11. Enrico Vaccariello & Riccardo Trinchero & Igor S. Stievano & Pierluigi Leone, 2021. "A Statistical Assessment of Blending Hydrogen into Gas Networks," Energies, MDPI, vol. 14(16), pages 1-17, August.
    12. Dong, Haiyan & Fu, Yanbo & Jia, Qingquan & Zhang, Tie & Meng, Dequn, 2023. "Low carbon optimization of integrated energy microgrid based on life cycle analysis method and multi time scale energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 60-71.
    13. Wang, Sheng & Hui, Hongxun & Ding, Yi & Song, Yonghua, 2024. "Long-term reliability evaluation of integrated electricity and gas systems considering distributed hydrogen injections," Applied Energy, Elsevier, vol. 356(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dancker, Jonte & Wolter, Martin, 2022. "A coupled transient gas flow calculation with a simultaneous calorific-value-gradient improved hydrogen tracking," Applied Energy, Elsevier, vol. 316(C).
    2. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Kouchachvili, Lia & Entchev, Evgueniy, 2018. "Power to gas and H2/NG blend in SMART energy networks concept," Renewable Energy, Elsevier, vol. 125(C), pages 456-464.
    4. Solé, Jordi & García-Olivares, Antonio & Turiel, Antonio & Ballabrera-Poy, Joaquim, 2018. "Renewable transitions and the net energy from oil liquids: A scenarios study," Renewable Energy, Elsevier, vol. 116(PA), pages 258-271.
    5. Raheli, Enrica & Wu, Qiuwei & Zhang, Menglin & Wen, Changyun, 2021. "Optimal coordinated operation of integrated natural gas and electric power systems: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Szoplik, Jolanta & Stelmasińska, Paulina, 2019. "Analysis of gas network storage capacity for alternative fuels in Poland," Energy, Elsevier, vol. 172(C), pages 343-353.
    7. Danieli, Piero & Lazzaretto, Andrea & Al-Zaili, Jafar & Sayma, Abdulnaser & Masi, Massimo & Carraro, Gianluca, 2022. "The potential of the natural gas grid to accommodate hydrogen as an energy vector in transition towards a fully renewable energy system," Applied Energy, Elsevier, vol. 313(C).
    8. de Vries, Harmen & Mokhov, Anatoli V. & Levinsky, Howard B., 2017. "The impact of natural gas/hydrogen mixtures on the performance of end-use equipment: Interchangeability analysis for domestic appliances," Applied Energy, Elsevier, vol. 208(C), pages 1007-1019.
    9. Danko Vidović & Elis Sutlović & Matislav Majstrović, 2021. "A Unique Electrical Model for the Steady-State Analysis of a Multi-Energy System," Energies, MDPI, vol. 14(18), pages 1-23, September.
    10. Romeo, Luis M. & Cavana, Marco & Bailera, Manuel & Leone, Pierluigi & Peña, Begoña & Lisbona, Pilar, 2022. "Non-stoichiometric methanation as strategy to overcome the limitations of green hydrogen injection into the natural gas grid," Applied Energy, Elsevier, vol. 309(C).
    11. Fan, Di & Gong, Jing & Zhang, Shengnan & Shi, Guoyun & Kang, Qi & Xiao, Yaqi & Wu, Changchun, 2021. "A transient composition tracking method for natural gas pipe networks," Energy, Elsevier, vol. 215(PA).
    12. de Vries, Harmen & Levinsky, Howard B., 2020. "Flashback, burning velocities and hydrogen admixture: Domestic appliance approval, gas regulation and appliance development," Applied Energy, Elsevier, vol. 259(C).
    13. Bermúdez, Alfredo & Shabani, Mohsen, 2022. "Numerical simulation of gas composition tracking in a gas transportation network," Energy, Elsevier, vol. 247(C).
    14. Wang, Tiantian & Liu, Xuemin & Zhang, Yang & Zhang, Hai, 2024. "Thermodynamic and emission characteristics of a hydrogen-enriched natural gas-fired boiler integrated with external flue gas recirculation and waste heat recovery," Applied Energy, Elsevier, vol. 358(C).
    15. Yifei Lu & Thiemo Pesch & Andrea Benigni, 2021. "Simulation of Coupled Power and Gas Systems with Hydrogen-Enriched Natural Gas," Energies, MDPI, vol. 14(22), pages 1-17, November.
    16. Colbertaldo, P. & Cerniauskas, S. & Grube, T. & Robinius, M. & Stolten, D. & Campanari, S., 2020. "Clean mobility infrastructure and sector integration in long-term energy scenarios: The case of Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Deymi-Dashtebayaz, Mahdi & Ebrahimi-Moghadam, Amir & Pishbin, Seyyed Iman & Pourramezan, Mahdi, 2019. "Investigating the effect of hydrogen injection on natural gas thermo-physical properties with various compositions," Energy, Elsevier, vol. 167(C), pages 235-245.
    18. Quarton, Christopher J. & Samsatli, Sheila, 2018. "Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 302-316.
    19. Shu, Kangan & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Chen, Zhe & He, Haibo & Wen, Jinyu, 2019. "Real-time subsidy based robust scheduling of the integrated power and gas system," Applied Energy, Elsevier, vol. 236(C), pages 1158-1167.
    20. Chaczykowski, Maciej & Zarodkiewicz, Paweł, 2017. "Simulation of natural gas quality distribution for pipeline systems," Energy, Elsevier, vol. 134(C), pages 681-698.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.