IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v139y2021ics1364032120308728.html
   My bibliography  Save this article

Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective

Author

Listed:
  • Ardolino, F.
  • Cardamone, G.F.
  • Parrillo, F.
  • Arena, U.

Abstract

The study reviews and compares the most utilised techniques to obtain high quality biomethane by upgrading biogas from anaerobic digestion of the organic fraction of municipal solid waste. Environmental and economic aspects of membrane separation, water scrubbing, chemical absorption with amine solvent, and pressure swing adsorption have been quantified in a life cycle perspective. An attributional environmental Life Cycle Assessment has been implemented with the support of a Material Flow Analysis and in combination with a complementary environmental Life Cycle Costing. The analyses are based on data largely obtained from Italian existing plants but they can be generalised to the whole European Union, as demonstrated by a companion sensitivity analysis. The comparative assessment of the results indicates all the examined options as fully sustainable, also identifying the “win-win” situations. In particular, the membrane separation technique appears to have the best performances, even though in some cases with limited differences. With reference to base case scenarios, this technique shows better results for the respiratory inorganics potential (up to 34%, i.e. up to 328 kgPM2.5eq/y), global warming potential (up to 7%, i.e. up to 344 tCO2eq/y), and non-renewable energy potential (up to 12%, i.e. up to 6400 GJprimary/y) as well as for life cycle costs (up to 3.4%, i.e. about 60 k€/y). The performances of the examined techniques appear anyway dependent on site-specific conditions (such as the injection pressure in the gas grid or the existence/amount of local economic incentives) and commercial strategies for the market of interest.

Suggested Citation

  • Ardolino, F. & Cardamone, G.F. & Parrillo, F. & Arena, U., 2021. "Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032120308728
    DOI: 10.1016/j.rser.2020.110588
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120308728
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    2. Patterson, Tim & Esteves, Sandra & Dinsdale, Richard & Guwy, Alan, 2011. "An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK," Energy Policy, Elsevier, vol. 39(3), pages 1806-1816, March.
    3. Barbera, Elena & Menegon, Silvia & Banzato, Donatella & D'Alpaos, Chiara & Bertucco, Alberto, 2019. "From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context," Renewable Energy, Elsevier, vol. 135(C), pages 663-673.
    4. Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
    5. Rotunno, Paolo & Lanzini, Andrea & Leone, Pierluigi, 2017. "Energy and economic analysis of a water scrubbing based biogas upgrading process for biomethane injection into the gas grid or use as transportation fuel," Renewable Energy, Elsevier, vol. 102(PB), pages 417-432.
    6. Collet, Pierre & Flottes, Eglantine & Favre, Alain & Raynal, Ludovic & Pierre, Hélène & Capela, Sandra & Peregrina, Carlos, 2017. "Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology," Applied Energy, Elsevier, vol. 192(C), pages 282-295.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keogh, N. & Corr, D. & Monaghan, R.F.D., 2024. "An environmental and economic assessment for biomethane injection and natural gas heavy goods vehicles," Applied Energy, Elsevier, vol. 360(C).
    2. Zheng, Ji-Lu & Zhu, Ya-Hong & Su, Hong-Yu & Sun, Guo-Tao & Kang, Fu-Ren & Zhu, Ming-Qiang, 2022. "Life cycle assessment and techno-economic analysis of fuel ethanol production via bio-oil fermentation based on a centralized-distribution model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Debora Mignogna & Márta Szabó & Paolo Ceci & Pasquale Avino, 2024. "Biomass Energy and Biofuels: Perspective, Potentials, and Challenges in the Energy Transition," Sustainability, MDPI, vol. 16(16), pages 1-33, August.
    4. Wafaurahman Wafa & Amir Hamzah Sharaai & Nitanan Koshy Matthew & Sabrina Abdullah J Ho & Noor Ahmad Akhundzada, 2022. "Organizational Life Cycle Sustainability Assessment (OLCSA) for a Higher Education Institution as an Organization: A Systematic Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(5), pages 1-29, February.
    5. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Alessia Amato & Konstantina Tsigkou & Alessandro Becci & Francesca Beolchini & Nicolò M. Ippolito & Francesco Ferella, 2023. "Life Cycle Assessment of Biomethane vs. Fossil Methane Production and Supply," Energies, MDPI, vol. 16(12), pages 1-18, June.
    8. Johannes Full & Silja Hohmann & Sonja Ziehn & Edgar Gamero & Tobias Schließ & Hans-Peter Schmid & Robert Miehe & Alexander Sauer, 2023. "Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU)," Energies, MDPI, vol. 16(13), pages 1-16, June.
    9. Wantz, Eliot & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2022. "Rate-based modeling approach for High Pressure Water Scrubbing with unsteady gas flowrate and multicomponent absorption applied to biogas upgrading," Applied Energy, Elsevier, vol. 312(C).
    10. Keogh, Niamh & Corr, D. & O'Shea, R. & Monaghan, R.F.D., 2022. "The gas grid as a vector for regional decarbonisation - a techno economic case study for biomethane injection and natural gas heavy goods vehicles," Applied Energy, Elsevier, vol. 323(C).
    11. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. George Mallouppas & Elias Ar. Yfantis & Constantina Ioannou & Andreas Paradeisiotis & Angelos Ktoris, 2023. "Application of Biogas and Biomethane as Maritime Fuels: A Review of Research, Technology Development, Innovation Proposals, and Market Potentials," Energies, MDPI, vol. 16(4), pages 1-25, February.
    13. Bidart, Christian & Wichert, Martin & Kolb, Gunther & Held, Michael, 2022. "Biogas catalytic methanation for biomethane production as fuel in freight transport - A carbon footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Karin Meisterl & Sergio Sastre & Ignasi Puig-Ventosa & Rosaria Chifari & Laura Martínez Sánchez & Laurène Chochois & Gabriella Fiorentino & Amalia Zucaro, 2024. "Circular Bioeconomy in the Metropolitan Area of Barcelona: Policy Recommendations to Optimize Biowaste Management," Sustainability, MDPI, vol. 16(3), pages 1-22, January.
    15. Song, Guohui & Xiao, Jun & Yan, Chao & Gu, Haiming & Zhao, Hao, 2022. "Quality of gaseous biofuels: Statistical assessment and guidance on production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    16. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2021. "Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review," Energies, MDPI, vol. 14(20), pages 1-22, October.
    17. Matteo Galloni & Gioele Di Marcoberardino, 2024. "Biogas Upgrading Technology: Conventional Processes and Emerging Solutions Analysis," Energies, MDPI, vol. 17(12), pages 1-29, June.
    18. Mehta, Neha & Anderson, Aine & Johnston, Christopher R. & Rooney, David W., 2022. "Evaluating the opportunity for utilising anaerobic digestion and pyrolysis of livestock manure and grass silage to decarbonise gas infrastructure: A Northern Ireland case study," Renewable Energy, Elsevier, vol. 196(C), pages 343-357.
    19. Alberto Benato & Chiara D’Alpaos & Alarico Macor, 2022. "Possible Ways of Extending the Biogas Plants Lifespan after the Feed-In Tariff Expiration," Energies, MDPI, vol. 15(21), pages 1-23, October.
    20. Becker, C.M. & Marder, M. & Junges, E. & Konrad, O., 2022. "Technologies for biogas desulfurization - An overview of recent studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    21. Gabriella Fiorentino & Amalia Zucaro & Antonietta Cerbone & Alessandro Giocoli & Vincenzo Motola & Caterina Rinaldi & Simona Scalbi & Giuliana Ansanelli, 2024. "The Contribution of Biogas to the Electricity Supply Chain: An Italian Life Cycle Assessment Database," Energies, MDPI, vol. 17(13), pages 1-24, July.
    22. Chipo Shonhiwa & Yolanda Mapantsela & Golden Makaka & Patrick Mukumba & Ngwarai Shambira, 2023. "Biogas Valorisation to Biomethane for Commercialisation in South Africa: A Review," Energies, MDPI, vol. 16(14), pages 1-20, July.
    23. Pochwatka, Patrycja & Rozakis, Stelios & Kowalczyk-Juśko, Alina & Czekała, Wojciech & Qiao, Wei & Nägele, Hans-Joachim & Janczak, Damian & Mazurkiewicz, Jakub & Mazur, Andrzej & Dach, Jacek, 2023. "The energetic and economic analysis of demand-driven biogas plant investment possibility in dairy farm," Energy, Elsevier, vol. 283(C).
    24. Francesco Zito, Pasquale & Brunetti, Adele & Barbieri, Giuseppe, 2022. "Renewable biomethane production from biogas upgrading via membrane separation: Experimental analysis and multistep configuration design," Renewable Energy, Elsevier, vol. 200(C), pages 777-787.
    25. Zheng, Ji-Lu & Zhu, Ya-Hong & Dong, Yan-Yan & Zhu, Ming-Qiang, 2023. "Life cycle water consumption of bio-oil fermentation for bio-ethanol production based on a distributed-centralized model," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cavaignac, Renata S. & Ferreira, Newton L. & Guardani, Roberto, 2021. "Techno-economic and environmental process evaluation of biogas upgrading via amine scrubbing," Renewable Energy, Elsevier, vol. 171(C), pages 868-880.
    2. Lombardi, Lidia & Francini, Giovanni, 2020. "Techno-economic and environmental assessment of the main biogas upgrading technologies," Renewable Energy, Elsevier, vol. 156(C), pages 440-458.
    3. Ghafoori, Mohammad Samim & Loubar, Khaled & Marin-Gallego, Mylène & Tazerout, Mohand, 2022. "Techno-economic and sensitivity analysis of biomethane production via landfill biogas upgrading and power-to-gas technology," Energy, Elsevier, vol. 239(PB).
    4. D’Adamo, Idiano & Falcone, Pasquale Marcello & Huisingh, Donald & Morone, Piergiuseppe, 2021. "A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond?," Renewable Energy, Elsevier, vol. 163(C), pages 1660-1672.
    5. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Barbera, Elena & Menegon, Silvia & Banzato, Donatella & D'Alpaos, Chiara & Bertucco, Alberto, 2019. "From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context," Renewable Energy, Elsevier, vol. 135(C), pages 663-673.
    7. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    8. Philipp Biegger & Florian Kirchbacher & Ana Roza Medved & Martin Miltner & Markus Lehner & Michael Harasek, 2018. "Development of Honeycomb Methanation Catalyst and Its Application in Power to Gas Systems," Energies, MDPI, vol. 11(7), pages 1-17, June.
    9. Ma, Chunyan & Xie, Yujiao & Ji, Xiaoyan & Liu, Chang & Lu, Xiaohua, 2018. "Modeling, simulation and evaluation of biogas upgrading using aqueous choline chloride/urea," Applied Energy, Elsevier, vol. 229(C), pages 1269-1283.
    10. Grzegorz Piechota & Bartłomiej Igliński, 2021. "Biomethane in Poland—Current Status, Potential, Perspective and Development," Energies, MDPI, vol. 14(6), pages 1-32, March.
    11. Stürmer, Bernhard & Novakovits, Philipp & Luidolt, Alexander & Zweiler, Richard, 2019. "Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region," Renewable Energy, Elsevier, vol. 130(C), pages 920-929.
    12. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.
    13. Andrea G. Capodaglio & Arianna Callegari & Maria Virginia Lopez, 2016. "European Framework for the Diffusion of Biogas Uses: Emerging Technologies, Acceptance, Incentive Strategies, and Institutional-Regulatory Support," Sustainability, MDPI, vol. 8(4), pages 1-18, March.
    14. Loh, S.K. & Nasrin, A.B. & Mohamad Azri, S. & Nurul Adela, B. & Muzzammil, N. & Daryl Jay, T. & Stasha Eleanor, R.A. & Lim, W.S. & Choo, Y.M. & Kaltschmitt, M., 2017. "First Report on Malaysia’s experiences and development in biogas capture and utilization from palm oil mill effluent under the Economic Transformation Programme: Current and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1257-1274.
    15. Wantz, Eliot & Lemonnier, Mathis & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2023. "Innovative high-pressure water scrubber for biogas upgrading at farm-scale using vacuum for water regeneration," Applied Energy, Elsevier, vol. 350(C).
    16. Gao, Shida & Bo, Cuimei & Li, Jun & Niu, Chao & Lu, Xiaohua, 2020. "Multi-objective optimization and dynamic control of biogas pressurized water scrubbing process," Renewable Energy, Elsevier, vol. 147(P1), pages 2335-2344.
    17. Muhamed Rasit Atelge & Halil Senol & Mohammed Djaafri & Tulin Avci Hansu & David Krisa & Abdulaziz Atabani & Cigdem Eskicioglu & Hamdi Muratçobanoğlu & Sebahattin Unalan & Slimane Kalloum & Nuri Azbar, 2021. "A Critical Overview of the State-of-the-Art Methods for Biogas Purification and Utilization Processes," Sustainability, MDPI, vol. 13(20), pages 1-39, October.
    18. Brigagão, George Victor & Wiesberg, Igor Lapenda & Pinto, Juliana Leite & Araújo, Ofélia de Queiroz Fernandes & de Medeiros, José Luiz, 2019. "Upstream and downstream processing of microalgal biogas: Emissions, energy and economic performances under carbon taxation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 508-520.
    19. Idiano D’Adamo & Claudio Sassanelli, 2022. "Biomethane Community: A Research Agenda towards Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    20. Van Dael, Miet & Kreps, Sabine & Virag, Ana & Kessels, Kris & Remans, Koen & Thomas, Denis & De Wilde, Fabian, 2018. "Techno-economic assessment of a microbial power-to-gas plant – Case study in Belgium," Applied Energy, Elsevier, vol. 215(C), pages 416-425.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032120308728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.