IDEAS home Printed from https://ideas.repec.org/r/eee/jmvana/v58y1996i2p162-181.html
   My bibliography  Save this item

Bivariate Tensor-Product B-Splines in a Partly Linear Model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Park, Seyoung & Lee, Eun Ryung, 2021. "Hypothesis testing of varying coefficients for regional quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
  2. Horowitz, Joel L. & Lee, Sokbae, 2005. "Nonparametric Estimation of an Additive Quantile Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
  3. Sherwood, Ben, 2016. "Variable selection for additive partial linear quantile regression with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 206-223.
  4. Jun Jin & Tiefeng Ma & Jiajia Dai & Shuangzhe Liu, 2021. "Penalized weighted composite quantile regression for partially linear varying coefficient models with missing covariates," Computational Statistics, Springer, vol. 36(1), pages 541-575, March.
  5. Kalyan Das & Angshuman Sarkar, 2014. "Robust inference for generalized partially linear mixed models that account for censored responses and missing covariates -- an application to Arctic data analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2418-2436, November.
  6. Adam Maidman & Lan Wang, 2018. "New semiparametric method for predicting high‐cost patients," Biometrics, The International Biometric Society, vol. 74(3), pages 1104-1111, September.
  7. Weihua Zhao & Weiping Zhang & Heng Lian, 2020. "Marginal quantile regression for varying coefficient models with longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 213-234, February.
  8. Kagerer, Kathrin, 2013. "A short introduction to splines in least squares regression analysis," University of Regensburg Working Papers in Business, Economics and Management Information Systems 472, University of Regensburg, Department of Economics.
  9. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "A simple and general approach to fitting the discount curve under no-arbitrage constraints," Finance Research Letters, Elsevier, vol. 15(C), pages 78-84.
  10. Matthew Harding & Carlos Lamarche, 2017. "Penalized Quantile Regression with Semiparametric Correlated Effects: An Application with Heterogeneous Preferences," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 342-358, March.
  11. Huang, Jianhua Z., 2003. "Asymptotics for polynomial spline regression under weak conditions," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 207-216, November.
  12. Ying Lu & Jiang Du & Zhimeng Sun, 2014. "Functional partially linear quantile regression model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 317-332, February.
  13. Zhao, Weihua & Lian, Heng, 2017. "Quantile index coefficient model with variable selection," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 40-58.
  14. Ibacache-Pulgar, Germán & Paula, Gilberto A., 2011. "Local influence for Student-t partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1462-1478, March.
  15. Lin, Huiming & Qin, Guoyou & Zhang, Jiajia & Zhu, Zhongyi, 2018. "Analysis of longitudinal data with covariate measurement error and missing responses: An improved unbiased estimating equation," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 104-112.
  16. Shujie Ma & Oliver Linton & Jiti Gao, 2017. "Estimation and inference in semiparametric quantile factor models," Monash Econometrics and Business Statistics Working Papers 8/17, Monash University, Department of Econometrics and Business Statistics.
  17. Zongwu Cai & Xiyuan Liu, 2020. "A Functional-Coefficient VAR Model for Dynamic Quantiles with Constructing Financial Network," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202017, University of Kansas, Department of Economics, revised Oct 2020.
  18. Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.
  19. repec:wyi:journl:002114 is not listed on IDEAS
  20. Lili Yue & Gaorong Li & Heng Lian, 2019. "Identification and estimation in quantile varying-coefficient models with unknown link function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1251-1275, December.
  21. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
  22. Raheem, S.M. Enayetur & Ahmed, S. Ejaz & Doksum, Kjell A., 2012. "Absolute penalty and shrinkage estimation in partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 874-891.
  23. Ma, Shujie & Linton, Oliver & Gao, Jiti, 2021. "Estimation and inference in semiparametric quantile factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 295-323.
  24. Michael Levine, 2019. "Robust functional estimation in the multivariate partial linear model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 743-770, August.
  25. Cai, Zongwu & Xiao, Zhijie, 2012. "Semiparametric quantile regression estimation in dynamic models with partially varying coefficients," Journal of Econometrics, Elsevier, vol. 167(2), pages 413-425.
  26. Sobotka, Fabian & Kneib, Thomas, 2012. "Geoadditive expectile regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 755-767.
  27. Qin, Guoyou & Zhang, Jiajia & Zhu, Zhongyi, 2016. "Simultaneous mean and covariance estimation of partially linear models for longitudinal data with missing responses and covariate measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 24-39.
  28. Zhao, Weihua & Zhou, Yan & Lian, Heng, 2018. "Time-varying quantile single-index model for multivariate responses," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 32-49.
  29. Tang Qingguo, 2009. "Asymptotic normality of M-estimators in a semiparametric model with longitudinal data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 69(1), pages 55-67, January.
  30. He, Xuming & Liang, Hua, 1997. "Quantile regression estimates for a class of linear and partially linear errors-in-variables models," SFB 373 Discussion Papers 1997,103, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  31. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "Semi-nonparametric estimation of the call-option price surface under strike and time-to-expiry no-arbitrage constraints," Journal of Econometrics, Elsevier, vol. 184(2), pages 242-261.
  32. Li, Ting & Song, Xinyuan & Zhang, Yingying & Zhu, Hongtu & Zhu, Zhongyi, 2021. "Clusterwise functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
  33. Ganggang Xu & Suojin Wang & Jianhua Z. Huang, 2014. "Focused information criterion and model averaging based on weighted composite quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 365-381, June.
  34. Wong, Heung & Zhang, Riquan & Ip, Wai-cheung & Li, Guoying, 2008. "Functional-coefficient partially linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 278-305, February.
  35. Graciela Boente & Daniela Rodriguez & Pablo Vena, 2020. "Robust estimators in a generalized partly linear regression model under monotony constraints," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 50-89, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.