IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i4p874-891.html
   My bibliography  Save this article

Absolute penalty and shrinkage estimation in partially linear models

Author

Listed:
  • Raheem, S.M. Enayetur
  • Ahmed, S. Ejaz
  • Doksum, Kjell A.

Abstract

In the context of a partially linear regression model, shrinkage semiparametric estimation is considered based on the Stein-rule. In this framework, the coefficient vector is partitioned into two sub-vectors: the first sub-vector gives the coefficients of interest, i.e., main effects (for example, treatment effects), and the second sub-vector is for variables that may or may not need to be controlled. When estimating the first sub-vector, the best estimate may be obtained using either the full model that includes both sub-vectors, or the reduced model which leaves out the second sub-vector. It is demonstrated that shrinkage estimators which combine two semiparametric estimators computed for the full model and the reduced model outperform the semiparametric estimator for the full model. Using the semiparametric estimate for the reduced model is best when the second sub-vector is the null vector, but this estimator suffers seriously from bias otherwise. The relative dominance picture of suggested estimators is investigated. In particular, suitability of estimating the nonparametric component based on the B-spline basis function is explored. Further, the performance of the proposed estimators is compared with an absolute penalty estimator through Monte Carlo simulation. Lasso and adaptive lasso were implemented for simultaneous model selection and parameter estimation. A real data example is given to compare the proposed estimators with lasso and adaptive lasso estimators.

Suggested Citation

  • Raheem, S.M. Enayetur & Ahmed, S. Ejaz & Doksum, Kjell A., 2012. "Absolute penalty and shrinkage estimation in partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 874-891.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:4:p:874-891
    DOI: 10.1016/j.csda.2011.09.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311003525
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.09.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    3. He, Xuming & Shi, Peide, 1996. "Bivariate Tensor-Product B-Splines in a Partly Linear Model," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 162-181, August.
    4. Judge, George G. & Mittelhammer, Ron C, 2003. "A Semi-Parametric Basis for Combining Estimation Problems Under Quadratic Loss," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8z25j0w3, Department of Agricultural & Resource Economics, UC Berkeley.
    5. Nicolai Meinshausen & Peter Bühlmann, 2010. "Stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 417-473, September.
    6. Ahmed, S. Ejaz & Hussein, Abdulkadir & Nkurunziza, Sévérien, 2010. "Robust inference strategy in the presence of measurement error," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 726-732, April.
    7. Burman, Prabir, 1991. "Regression function estimation from dependent observations," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 263-279, February.
    8. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    9. Judge G.G. & Mittelhammer R.C., 2004. "A Semiparametric Basis for Combining Estimation Problems Under Quadratic Loss," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 479-487, January.
    10. Mroz, Thomas A, 1987. "The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions," Econometrica, Econometric Society, vol. 55(4), pages 765-799, July.
    11. Liang, Hua, 2006. "Estimation in partially linear models and numerical comparisons," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 675-687, February.
    12. Sun, Jie & Kopciuk, Karen A. & Lu, Xuewen, 2008. "Polynomial spline estimation of partially linear single-index proportional hazards regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 176-188, September.
    13. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martinez-Sanchis, Elena & Mora, Juan & Kandemir, Ilker, 2012. "Counterfactual distributions of wages via quantile regression with endogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3212-3229.
    2. Tae-Hwan Kim & Christophe Muller, 2020. "Inconsistency transmission and variance reduction in two-stage quantile regression," Post-Print hal-02084505, HAL.
    3. M. Arashi & Mahdi Roozbeh, 2019. "Some improved estimation strategies in high-dimensional semiparametric regression models with application to riboflavin production data," Statistical Papers, Springer, vol. 60(3), pages 667-686, June.
    4. Guozhi Hu & Weihu Cheng & Jie Zeng, 2023. "Optimal Model Averaging for Semiparametric Partially Linear Models with Censored Data," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    5. Marwan Al-Momani & Abdaljbbar B. A. Dawod, 2022. "Model Selection and Post Selection to Improve the Estimation of the ARCH Model," JRFM, MDPI, vol. 15(4), pages 1-17, April.
    6. T. Thomson & S. Hossain, 2018. "Efficient Shrinkage for Generalized Linear Mixed Models Under Linear Restrictions," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 385-410, August.
    7. Bahadır Yüzbaşı & S. Ejaz Ahmed & Dursun Aydın, 2020. "Ridge-type pretest and shrinkage estimations in partially linear models," Statistical Papers, Springer, vol. 61(2), pages 869-898, April.
    8. Tiefeng Ma & Shuangzhe Liu & S. Ahmed, 2014. "Shrinkage estimation for the mean of the inverse Gaussian population," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 733-752, August.
    9. S. Hossain & S. Ejaz Ahmed & Grace Y. Yi & B. Chen, 2016. "Shrinkage and pretest estimators for longitudinal data analysis under partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 531-549, September.
    10. Roozbeh, Mahdi, 2015. "Shrinkage ridge estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 56-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    2. Shakhawat Hossain & Trevor Thomson & Ejaz Ahmed, 2018. "Shrinkage estimation in linear mixed models for longitudinal data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 569-586, July.
    3. Qin, Yichen & Wang, Linna & Li, Yang & Li, Rong, 2023. "Visualization and assessment of model selection uncertainty," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    4. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    5. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    6. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    7. Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    8. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    9. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    10. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    11. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    12. Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
    13. Li, Xinjue & Zboňáková, Lenka & Wang, Weining & Härdle, Wolfgang Karl, 2019. "Combining Penalization and Adaption in High Dimension with Application in Bond Risk Premia Forecasting," IRTG 1792 Discussion Papers 2019-030, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    14. Jianqing Fan & Yang Feng & Jiancheng Jiang & Xin Tong, 2016. "Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 275-287, March.
    15. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    16. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    17. Zhixuan Fu & Shuangge Ma & Haiqun Lin & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized Variable Selection for Multi-center Competing Risks Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 379-405, December.
    18. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    19. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00917797, HAL.
    20. Lian, Heng & Li, Jianbo & Hu, Yuao, 2013. "Shrinkage variable selection and estimation in proportional hazards models with additive structure and high dimensionality," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 99-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:4:p:874-891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.