IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v65y2003i3p207-216.html
   My bibliography  Save this article

Asymptotics for polynomial spline regression under weak conditions

Author

Listed:
  • Huang, Jianhua Z.

Abstract

We derive rate of convergence for spline regression under weak conditions. The results improve upon those in Huang (Ann. Statist. 26 (1998a) 242) in two ways. Firstly, results are obtained under less stringent conditions on the growing rate of the number of knots. Secondly, L2 approximation instead of L[infinity] approximation by splines are used to bound the rate of convergence, this allows us to obtain results when the regression function or its components in ANOVA decomposition are in broader function classes.

Suggested Citation

  • Huang, Jianhua Z., 2003. "Asymptotics for polynomial spline regression under weak conditions," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 207-216, November.
  • Handle: RePEc:eee:stapro:v:65:y:2003:i:3:p:207-216
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00253-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Jianhua Z., 1998. "Functional ANOVA Models for Generalized Regression," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 49-71, October.
    2. He, Xuming & Shi, Peide, 1996. "Bivariate Tensor-Product B-Splines in a Partly Linear Model," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 162-181, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "On the asymptotic theory for least squares series: pointwise and uniform results," CeMMAP working papers CWP73/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2015. "Some new asymptotic theory for least squares series: Pointwise and uniform results," Journal of Econometrics, Elsevier, vol. 186(2), pages 345-366.
    3. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximation of suprema of empirical processes," CeMMAP working papers CWP44/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Holland, Ashley D., 2017. "Penalized spline estimation in the partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 211-235.
    5. Chen, Xiaohong & Christensen, Timothy M., 2015. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," Journal of Econometrics, Elsevier, vol. 188(2), pages 447-465.
    6. Wu, Jingwei & Peng, Hanxiang & Tu, Wanzhu, 2019. "Large-sample estimation and inference in multivariate single-index models," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 382-396.
    7. Xiaohong Chen & Timothy M. Christensen, 2014. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," CeMMAP working papers 46/14, Institute for Fiscal Studies.
    8. Yu, Lili & Peace, Karl E., 2012. "Spline nonparametric quasi-likelihood regression within the frame of the accelerated failure time model," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2675-2687.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lan Xue & Hua Liang, 2010. "Polynomial Spline Estimation for a Generalized Additive Coefficient Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 26-46, March.
    2. Ma, Shujie & Linton, Oliver & Gao, Jiti, 2021. "Estimation and inference in semiparametric quantile factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 295-323.
    3. Alexander Caicedo & Carolina Varon & Sabine Van Huffel & Johan A K Suykens, 2019. "Functional form estimation using oblique projection matrices for LS-SVM regression models," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-21, June.
    4. Horowitz, Joel L. & Lee, Sokbae, 2005. "Nonparametric Estimation of an Additive Quantile Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
    5. Tang Qingguo, 2009. "Asymptotic normality of M-estimators in a semiparametric model with longitudinal data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 69(1), pages 55-67, January.
    6. He, Xuming & Liang, Hua, 1997. "Quantile regression estimates for a class of linear and partially linear errors-in-variables models," SFB 373 Discussion Papers 1997,103, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    7. Lin, Huiming & Qin, Guoyou & Zhang, Jiajia & Zhu, Zhongyi, 2018. "Analysis of longitudinal data with covariate measurement error and missing responses: An improved unbiased estimating equation," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 104-112.
    8. Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.
    9. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "A simple and general approach to fitting the discount curve under no-arbitrage constraints," Finance Research Letters, Elsevier, vol. 15(C), pages 78-84.
    10. Raheem, S.M. Enayetur & Ahmed, S. Ejaz & Doksum, Kjell A., 2012. "Absolute penalty and shrinkage estimation in partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 874-891.
    11. Kagerer, Kathrin, 2013. "A short introduction to splines in least squares regression analysis," University of Regensburg Working Papers in Business, Economics and Management Information Systems 472, University of Regensburg, Department of Economics.
    12. Matthew Harding & Carlos Lamarche, 2017. "Penalized Quantile Regression with Semiparametric Correlated Effects: An Application with Heterogeneous Preferences," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 342-358, March.
    13. Ibacache-Pulgar, Germán & Paula, Gilberto A., 2011. "Local influence for Student-t partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1462-1478, March.
    14. Miao Yang & Lan Xue & Lijian Yang, 2016. "Variable selection for additive model via cumulative ratios of empirical strengths total," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 595-616, September.
    15. Ganggang Xu & Suojin Wang & Jianhua Z. Huang, 2014. "Focused information criterion and model averaging based on weighted composite quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 365-381, June.
    16. Cai, Zongwu & Xiao, Zhijie, 2012. "Semiparametric quantile regression estimation in dynamic models with partially varying coefficients," Journal of Econometrics, Elsevier, vol. 167(2), pages 413-425.
    17. Ying Lu & Jiang Du & Zhimeng Sun, 2014. "Functional partially linear quantile regression model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 317-332, February.
    18. Lili Yue & Gaorong Li & Heng Lian, 2019. "Identification and estimation in quantile varying-coefficient models with unknown link function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1251-1275, December.
    19. Sobotka, Fabian & Kneib, Thomas, 2012. "Geoadditive expectile regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 755-767.
    20. Li, Ting & Song, Xinyuan & Zhang, Yingying & Zhu, Hongtu & Zhu, Zhongyi, 2021. "Clusterwise functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:65:y:2003:i:3:p:207-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.