IDEAS home Printed from https://ideas.repec.org/p/bay/rdwiwi/27968.html
   My bibliography  Save this paper

A short introduction to splines in least squares regression analysis

Author

Listed:
  • Kagerer, Kathrin

Abstract

Splines are an attractive way of flexibly modeling a regression curve since their basis functions can be included like ordinary covariates in regression settings. An overview of least squares regression using splines is presented including many graphical illustrations and comprehensive examples. Starting from two bases that are widely used for constructing splines, three different variants of splines are discussed: simple regression splines, penalized splines and smoothing splines. Further, restrictions such as monotonicity constraints are considered. The presented spline variants are illustrated and compared in a bivariate and a multivariate example with well-known data sets. A brief computational guide for practitioners using the open-source software R is given.

Suggested Citation

  • Kagerer, Kathrin, 2013. "A short introduction to splines in least squares regression analysis," University of Regensburg Working Papers in Business, Economics and Management Information Systems 472, University of Regensburg, Department of Economics.
  • Handle: RePEc:bay:rdwiwi:27968
    as

    Download full text from publisher

    File URL: https://epub.uni-regensburg.de/27968/1/DP472_Kagerer_introduction_splines.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Xuming & Shi, Peide, 1996. "Bivariate Tensor-Product B-Splines in a Partly Linear Model," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 162-181, August.
    2. Lu, Minggen & Zhang, Ying & Huang, Jian, 2009. "Semiparametric Estimation Methods for Panel Count Data Using Monotone B-Splines," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1060-1070.
    3. Harry Haupt & Kathrin Kagerer & Joachim Schnurbus, 2011. "Cross-validating fit and predictive accuracy of nonlinear quantile regressions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2939-2954, March.
    4. Gerda Claeskens & Tatyana Krivobokova & Jean D. Opsomer, 2009. "Asymptotic properties of penalized spline estimators," Biometrika, Biometrika Trust, vol. 96(3), pages 529-544.
    5. Jianhua Z. Huang & Haipeng Shen, 2004. "Functional Coefficient Regression Models for Non‐linear Time Series: A Polynomial Spline Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(4), pages 515-534, December.
    6. Cao, Yanrong & Lin, Haiqun & Wu, Tracy Z. & Yu, Yan, 2010. "Penalized spline estimation for functional coefficient regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 891-905, April.
    7. Manuel Landajo & Javier De Andrés & Pedro Lorca, 2008. "Measuring firm performance by using linear and non‐parametric quantile regressions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(2), pages 227-250, April.
    8. M. P. Wand, 2000. "A Comparison of Regression Spline Smoothing Procedures," Computational Statistics, Springer, vol. 15(4), pages 443-462, December.
    9. Seiya Imoto & Sadanori Konishi, 2003. "Selection of smoothing parameters inB-spline nonparametric regression models using information criteria," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 671-687, December.
    10. Lee, Thomas C. M., 2000. "Regression spline smoothing using the minimum description length principle," Statistics & Probability Letters, Elsevier, vol. 48(1), pages 71-82, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kagerer, Kathrin, 2015. "A hat matrix for monotonicity constrained B-spline and P-spline regression," University of Regensburg Working Papers in Business, Economics and Management Information Systems 484, University of Regensburg, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
    2. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "A simple and general approach to fitting the discount curve under no-arbitrage constraints," Finance Research Letters, Elsevier, vol. 15(C), pages 78-84.
    3. Clemontina A. Davenport & Arnab Maity & Yichao Wu, 2015. "Parametrically guided estimation in nonparametric varying coefficient models with quasi-likelihood," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(2), pages 195-213, June.
    4. Soumya D. Mohanty & Ethan Fahnestock, 2021. "Adaptive spline fitting with particle swarm optimization," Computational Statistics, Springer, vol. 36(1), pages 155-191, March.
    5. Tracy Wu & Haiqun Lin & Yan Yu, 2011. "Single-index coefficient models for nonlinear time series," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(1), pages 37-58.
    6. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    7. Minggen Lu & Dana Loomis, 2013. "Spline-based semiparametric estimation of partially linear Poisson regression with single-index models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(4), pages 905-922, December.
    8. Cao, Jiguo & Ramsay, James O., 2009. "Generalized profiling estimation for global and adaptive penalized spline smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2550-2562, May.
    9. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    10. Horowitz, Joel L. & Lee, Sokbae, 2005. "Nonparametric Estimation of an Additive Quantile Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
    11. Čížek, Pavel & Koo, Chao Hui, 2021. "Jump-preserving varying-coefficient models for nonlinear time series," Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
    12. Abdelaati Daouia & Léopold Simar & Paul W. Wilson, 2017. "Measuring firm performance using nonparametric quantile-type distances," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 156-181, March.
    13. Sonja Greven & Ciprian Crainiceanu, 2013. "On likelihood ratio testing for penalized splines," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 387-402, October.
    14. Cai Zongwu & Chen Linna & Fang Ying, 2012. "A New Forecasting Model for USD/CNY Exchange Rate," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-20, September.
    15. Olga Klopp & Marianna Pensky, 2013. "Sparse High-dimensional Varying Coefficient Model : Non-asymptotic Minimax Study," Working Papers 2013-30, Center for Research in Economics and Statistics.
    16. Adam Maidman & Lan Wang, 2018. "New semiparametric method for predicting high‐cost patients," Biometrics, The International Biometric Society, vol. 74(3), pages 1104-1111, September.
    17. Shohei Tateishi & Sadanori Konishi, 2011. "Nonlinear regression modeling and detecting change points via the relevance vector machine," Computational Statistics, Springer, vol. 26(3), pages 477-490, September.
    18. Blöchl, Andreas, 2014. "Trend Estimation with Penalized Splines as Mixed Models for Series with Structural Breaks," Discussion Papers in Economics 18446, University of Munich, Department of Economics.
    19. Weiwei Wang & Zhiyang Cui & Ruijie Chen & Yijun Wang & Xiaobing Zhao, 2024. "Regression analysis of clustered panel count data with additive mean models," Statistical Papers, Springer, vol. 65(5), pages 2915-2936, July.
    20. Ciprian Crainiceanu & David Ruppert & Raymond Carroll, 2004. "Spatially Adaptive Bayesian P-Splines with Heteroscedastic Errors," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1061, Berkeley Electronic Press.

    More about this item

    Keywords

    B-spline; truncated power basis; derivative; monotonicity; penalty; smoothing spline; R;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bay:rdwiwi:27968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gernot Deinzer (email available below). General contact details of provider: https://edirc.repec.org/data/wfregde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.