IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i2p278-305.html
   My bibliography  Save this article

Functional-coefficient partially linear regression model

Author

Listed:
  • Wong, Heung
  • Zhang, Riquan
  • Ip, Wai-cheung
  • Li, Guoying

Abstract

In this paper, the functional-coefficient partially linear regression (FCPLR) model is proposed by combining nonparametric and functional-coefficient regression (FCR) model. It includes the FCR model and the nonparametric regression (NPR) model as its special cases. It is also a generalization of the partially linear regression (PLR) model obtained by replacing the parameters in the PLR model with some functions of the covariates. The local linear technique and the integrated method are employed to give initial estimators of all functions in the FCPLR model. These initial estimators are asymptotically normal. The initial estimator of the constant part function shares the same bias as the local linear estimator of this function in the univariate nonparametric model, but the variance of the former is bigger than that of the latter. Similarly, initial estimators of every coefficient function share the same bias as the local linear estimates in the univariate FCR model, but the variance of the former is bigger than that of the latter. To decrease the variance of the initial estimates, a one-step back-fitting technique is used to obtain the improved estimators of all functions. The improved estimator of the constant part function has the same asymptotic normality property as the local linear nonparametric regression for univariate data. The improved estimators of the coefficient functions have the same asymptotic normality properties as the local linear estimates in FCR model. The bandwidths and the smoothing variables are selected by a data-driven method. Both simulated and real data examples related to nonlinear time series modeling are used to illustrate the applications of the FCPLR model.

Suggested Citation

  • Wong, Heung & Zhang, Riquan & Ip, Wai-cheung & Li, Guoying, 2008. "Functional-coefficient partially linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 278-305, February.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:2:p:278-305
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00043-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Xuming & Shi, Peide, 1996. "Bivariate Tensor-Product B-Splines in a Partly Linear Model," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 162-181, August.
    2. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    3. Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
    4. J. Fan & J.‐T. Zhang, 2000. "Two‐step estimation of functional linear models with applications to longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 303-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tu, Yundong & Wang, Ying, 2022. "Spurious functional-coefficient regression models and robust inference with marginal integration," Journal of Econometrics, Elsevier, vol. 229(2), pages 396-421.
    2. Heng Lian, 2011. "Functional partial linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(1), pages 115-128.
    3. Qing-Yan Peng & Jian-Jun Zhou & Nian-Sheng Tang, 2016. "Varying coefficient partially functional linear regression models," Statistical Papers, Springer, vol. 57(3), pages 827-841, September.
    4. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qihua & Zhang, Riquan, 2009. "Statistical estimation in varying coefficient models with surrogate data and validation sampling," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2389-2405, November.
    2. Qiu, Jia & Li, Degao & You, Jinhong, 2015. "SCAD-penalized regression for varying-coefficient models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 100-118.
    3. Yiqiang Lu & Riquan Zhang, 2009. "Smoothing spline estimation of generalised varying-coefficient mixed model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 815-825.
    4. Zhang, Riquan & Li, Guoying, 2007. "Averaged estimation of functional-coefficient regression models with different smoothing variables," Statistics & Probability Letters, Elsevier, vol. 77(4), pages 455-461, February.
    5. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    6. Lili Yue & Gaorong Li & Heng Lian, 2019. "Identification and estimation in quantile varying-coefficient models with unknown link function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1251-1275, December.
    7. Koo, Chao, 2018. "Essays on functional coefficient models," Other publications TiSEM ba87b8a5-3c55-40ec-967d-9, Tilburg University, School of Economics and Management.
    8. Lian, Heng, 2015. "Quantile regression for dynamic partially linear varying coefficient time series models," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 49-66.
    9. Zhao, Weihua & Lian, Heng, 2017. "Quantile index coefficient model with variable selection," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 40-58.
    10. Čížek, Pavel & Koo, Chao Hui, 2021. "Jump-preserving varying-coefficient models for nonlinear time series," Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
    11. Tang Qingguo & Cheng Longsheng, 2008. "M-estimation and B-spline approximation for varying coefficient models with longitudinal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 611-625.
    12. Wang-Li Xu & Li-Xing Zhu, 2008. "Goodness-of-fit testing for varying-coefficient models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(2), pages 129-146, September.
    13. Zhaoping Hong & Yuao Hu & Heng Lian, 2013. "Variable selection for high-dimensional varying coefficient partially linear models via nonconcave penalty," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 887-908, October.
    14. Lin, Cunjie & Zhou, Yong, 2014. "Analyzing right-censored and length-biased data with varying-coefficient transformation model," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 45-63.
    15. Linjun Tang & Zhangong Zhou, 2015. "Weighted local linear CQR for varying-coefficient models with missing covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 583-604, September.
    16. Li, Gaorong & Zhu, Lixing & Xue, Liugen & Feng, Sanying, 2010. "Empirical likelihood inference in partially linear single-index models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 718-732, March.
    17. Li, XiaoLi & You, JinHong, 2012. "Error covariance matrix correction based approach to functional coefficient regression models with generated covariates," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 263-281.
    18. Tang Qingguo & Cheng Longsheng, 2012. "Componentwise B-spline estimation for varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 53(3), pages 629-652, August.
    19. Cai, Zongwu & Xiao, Zhijie, 2012. "Semiparametric quantile regression estimation in dynamic models with partially varying coefficients," Journal of Econometrics, Elsevier, vol. 167(2), pages 413-425.
    20. Colin Wu & Xin Tian & Jarvis Yu, 2010. "Nonparametric estimation for time-varying transformation models with longitudinal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 133-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:2:p:278-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.