IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v36y2021i1d10.1007_s00180-020-01012-z.html
   My bibliography  Save this article

Penalized weighted composite quantile regression for partially linear varying coefficient models with missing covariates

Author

Listed:
  • Jun Jin

    (Southwestern University of Finance and Economics)

  • Tiefeng Ma

    (Southwestern University of Finance and Economics)

  • Jiajia Dai

    (Guizhou University)

  • Shuangzhe Liu

    (University of Canberra)

Abstract

In this paper we study partially linear varying coefficient models with missing covariates. Based on inverse probability-weighting and B-spline approximations, we propose a weighted B-spline composite quantile regression method to estimate the non-parametric function and the regression coefficients. Under some mild conditions, we establish the asymptotic normality and Horvitz–Thompson property of the proposed estimators. We further investigate a variable selection procedure by combining the proposed estimation method with adaptive LASSO. The oracle property of the proposed variable selection method is studied. Under a missing covariate scenario, two simulations with various non-normal error distributions and a real data application are conducted to assess and showcase the finite sample performance of the proposed estimation and variable selection methods.

Suggested Citation

  • Jun Jin & Tiefeng Ma & Jiajia Dai & Shuangzhe Liu, 2021. "Penalized weighted composite quantile regression for partially linear varying coefficient models with missing covariates," Computational Statistics, Springer, vol. 36(1), pages 541-575, March.
  • Handle: RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01012-z
    DOI: 10.1007/s00180-020-01012-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-020-01012-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-020-01012-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Wang, Lifeng & Li, Hongzhe & Huang, Jianhua Z., 2008. "Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1556-1569.
    3. Zhao, Peixin & Xue, Liugen, 2009. "Variable selection for semiparametric varying coefficient partially linear models," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2148-2157, October.
    4. Linjun Tang & Zhangong Zhou, 2015. "Weighted local linear CQR for varying-coefficient models with missing covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 583-604, September.
    5. Zhang, Wenyang & Lee, Sik-Yum & Song, Xinyuan, 2002. "Local Polynomial Fitting in Semivarying Coefficient Model," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 166-188, July.
    6. Huilan Liu & Hu Yang & Changgen Peng, 2019. "Weighted composite quantile regression for single index model with missing covariates at random," Computational Statistics, Springer, vol. 34(4), pages 1711-1740, December.
    7. Jianqing Fan & Runze Li, 2004. "New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 710-723, January.
    8. Hu Yang & Huilan Liu, 2016. "Penalized weighted composite quantile estimators with missing covariates," Statistical Papers, Springer, vol. 57(1), pages 69-88, March.
    9. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    10. He, Xuming & Shi, Peide, 1996. "Bivariate Tensor-Product B-Splines in a Partly Linear Model," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 162-181, August.
    11. Yan Fan & Wolfgang Karl Härdle & Weining Wang & Lixing Zhu, 2018. "Single-Index-Based CoVaR With Very High-Dimensional Covariates," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 212-226, April.
    12. Liang, Hua, 2008. "Generalized partially linear models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 880-895, May.
    13. Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Ruiqin & Xue, Liugen & Liu, Chunling, 2014. "Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 94-110.
    2. Weihua Zhao & Riquan Zhang & Jicai Liu & Yazhao Lv, 2014. "Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 165-191, February.
    3. Zhao, Peixin & Xue, Liugen, 2010. "Variable selection for semiparametric varying coefficient partially linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1872-1883, September.
    4. Zhao, Weihua & Lian, Heng, 2017. "Quantile index coefficient model with variable selection," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 40-58.
    5. Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
    6. Jun Jin & Tiefeng Ma & Jiajia Dai, 2021. "New efficient spline estimation for varying-coefficient models with two-step knot number selection," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 693-712, July.
    7. Weihua Zhao & Weiping Zhang & Heng Lian, 2020. "Marginal quantile regression for varying coefficient models with longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 213-234, February.
    8. Long Feng & Changliang Zou & Zhaojun Wang & Xianwu Wei & Bin Chen, 2015. "Robust spline-based variable selection in varying coefficient model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 85-118, January.
    9. Zhao, Weihua & Zhang, Riquan & Liu, Jicai & Hu, Hongchang, 2015. "Robust adaptive estimation for semivarying coefficient models," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 132-141.
    10. Zhao, Weihua & Jiang, Xuejun & Lian, Heng, 2018. "A principal varying-coefficient model for quantile regression: Joint variable selection and dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 269-280.
    11. Lian, Heng, 2015. "Quantile regression for dynamic partially linear varying coefficient time series models," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 49-66.
    12. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    13. Y. Andriyana & I. Gijbels & A. Verhasselt, 2014. "P-splines quantile regression estimation in varying coefficient models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 153-194, March.
    14. Shen, Yu & Liang, Han-Ying, 2018. "Quantile regression for partially linear varying-coefficient model with censoring indicators missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 1-18.
    15. Lili Yue & Gaorong Li & Heng Lian, 2019. "Identification and estimation in quantile varying-coefficient models with unknown link function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1251-1275, December.
    16. Tang, Yanlin & Song, Xinyuan & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in high-dimensional quantile varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 115-132.
    17. Jingyuan Liu & Runze Li & Rongling Wu, 2014. "Feature Selection for Varying Coefficient Models With Ultrahigh-Dimensional Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 266-274, March.
    18. Zhangong Zhou & Rong Jiang & Weimin Qian, 2013. "LAD variable selection for linear models with randomly censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 287-300, February.
    19. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    20. Kangning Wang & Wen Shan, 2021. "Copula and composite quantile regression-based estimating equations for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 441-455, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01012-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.