IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v58y1996i2p162-181.html
   My bibliography  Save this article

Bivariate Tensor-Product B-Splines in a Partly Linear Model

Author

Listed:
  • He, Xuming
  • Shi, Peide

Abstract

In some applications, the mean or median response is linearly related to some variables but the relation to additional variables are not easily parameterized. Partly linear models arise naturally in such circumstances. Suppose that a random sample {(Ti, Xi, Yi),i=1, 2, ..., n} is modeled byYi=XTi[beta]0+g0(Ti)+errori, whereYiis a real-valued response,Xi[set membership, variant]RpandTiranges over a unit square, andg0is an unknown function with a certain degree of smoothness. We make use of bivariate tensor-product B-splines as an approximation of the functiong0and consider M-type regression splines by minimization of [summation operator]ni=1 [rho](Yi-XTi[beta]-gn(Ti)) for some convex function[rho]. Mean, median and quantile regressions are included in this class. We show under appropriate conditions that the parameter estimate of[beta]achieves its information bound asymptotically and the function estimate ofg0attains the optimal rate of convergence in mean squared error. Our asymptotic results generalize directly to higher dimensions (for the variableT) provided that the functiong0is sufficiently smooth. Such smoothness conditions have often been assumed in the literature, but they impose practical limitations for the application of multivariate tensor product splines in function estimation. We also discuss the implementation of B-spline approximations based on commonly used knot selection criteria together with a simulation study of both mean and median regressions of partly linear models.

Suggested Citation

  • He, Xuming & Shi, Peide, 1996. "Bivariate Tensor-Product B-Splines in a Partly Linear Model," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 162-181, August.
  • Handle: RePEc:eee:jmvana:v:58:y:1996:i:2:p:162-181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(96)90045-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:58:y:1996:i:2:p:162-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.