My bibliography
Save this item
Short-term prediction of wind energy production
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuan, Xiaohui & Tan, Qingxiong & Lei, Xiaohui & Yuan, Yanbin & Wu, Xiaotao, 2017. "Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine," Energy, Elsevier, vol. 129(C), pages 122-137.
- Dehua Zheng & Min Shi & Yifeng Wang & Abinet Tesfaye Eseye & Jianhua Zhang, 2017. "Day-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling Approach Based on SCADA and Meteorological Information, and Evaluating the Impact of Input-Data Dependency on Forecasting Accuracy," Energies, MDPI, vol. 10(12), pages 1-23, December.
- Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
- Putz, Dominik & Gumhalter, Michael & Auer, Hans, 2021. "A novel approach to multi-horizon wind power forecasting based on deep neural architecture," Renewable Energy, Elsevier, vol. 178(C), pages 494-505.
- Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
- Yang, Zhongshan & Wang, Jian, 2018. "A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Applied Energy, Elsevier, vol. 230(C), pages 1108-1125.
- Poncela, Marta & Poncela, Pilar & Perán, José Ramón, 2013. "Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting," Applied Energy, Elsevier, vol. 108(C), pages 349-362.
- Dahl, Christian M. & Effraimidis, Georgios & Pedersen, Mikkel H., 2019. "Nonparametric wind power forecasting under fixed and random censoring," Energy Economics, Elsevier, vol. 84(C).
- Khalid, M. & Savkin, A.V., 2010. "A model predictive control approach to the problem of wind power smoothing with controlled battery storage," Renewable Energy, Elsevier, vol. 35(7), pages 1520-1526.
- Ritter, Matthias & Deckert, Lars, 2017.
"Site assessment, turbine selection, and local feed-in tariffs through the wind energy index,"
Applied Energy, Elsevier, vol. 185(P2), pages 1087-1099.
- Ritter, Matthias & Deckert, Lars, 2015. "Site assessment, turbine selection, and local feed-in tariffs through the wind energy index," SFB 649 Discussion Papers 2015-046, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Samuel Atuahene & Yukun Bao & Yao Yevenyo Ziggah & Patricia Semwaah Gyan & Feng Li, 2018. "Short-Term Electric Power Forecasting Using Dual-Stage Hierarchical Wavelet- Particle Swarm Optimization- Adaptive Neuro-Fuzzy Inference System PSO-ANFIS Approach Based On Climate Change," Energies, MDPI, vol. 11(10), pages 1-19, October.
- Pinson, P. & Reikard, G. & Bidlot, J.-R., 2012. "Probabilistic forecasting of the wave energy flux," Applied Energy, Elsevier, vol. 93(C), pages 364-370.
- Sharifian, Amir & Ghadi, M. Jabbari & Ghavidel, Sahand & Li, Li & Zhang, Jiangfeng, 2018. "A new method based on Type-2 fuzzy neural network for accurate wind power forecasting under uncertain data," Renewable Energy, Elsevier, vol. 120(C), pages 220-230.
- Mohamed Chaouch, 2023. "Probabilistic Wind Speed Forecasting for Wind Turbine Allocation in the Power Grid," Energies, MDPI, vol. 16(22), pages 1-15, November.
- Georgios Anastasiades & Patrick McSharry, 2013. "Quantile Forecasting of Wind Power Using Variability Indices," Energies, MDPI, vol. 6(2), pages 1-34, February.
- Block, C. & Collins, J. & Ketter, W. & Weinhardt, C., 2009. "A Multi-Agent Energy Trading Competition," ERIM Report Series Research in Management ERS-2009-054-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Jiang, Yu & Song, Zhe & Kusiak, Andrew, 2013. "Very short-term wind speed forecasting with Bayesian structural break model," Renewable Energy, Elsevier, vol. 50(C), pages 637-647.
- Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015.
"Designing an index for assessing wind energy potential,"
Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
- Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2014. "Designing an index for assessing wind energy potential," SFB 649 Discussion Papers 2014-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Sánchez, Ismael, 2008. "Adaptive combination of forecasts with application to wind energy," International Journal of Forecasting, Elsevier, vol. 24(4), pages 679-693.
- Vladimir Simankov & Pavel Buchatskiy & Semen Teploukhov & Stefan Onishchenko & Anatoliy Kazak & Petr Chetyrbok, 2023. "Review of Estimating and Predicting Models of the Wind Energy Amount," Energies, MDPI, vol. 16(16), pages 1-24, August.
- Liu, Yin & Davanloo Tajbakhsh, Sam & Conejo, Antonio J., 2021. "Spatiotemporal wind forecasting by learning a hierarchically sparse inverse covariance matrix using wind directions," International Journal of Forecasting, Elsevier, vol. 37(2), pages 812-824.
- David Schönheit & Dominik Möst, 2019. "The Effect of Offshore Wind Capacity Expansion on Uncertainties in Germany’s Day-Ahead Wind Energy Forecasts," Energies, MDPI, vol. 12(13), pages 1-23, July.
- Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
- Taylor, James W. & Jeon, Jooyoung, 2015. "Forecasting wind power quantiles using conditional kernel estimation," Renewable Energy, Elsevier, vol. 80(C), pages 370-379.
- Giwhyun Lee & Yu Ding & Marc G. Genton & Le Xie, 2015. "Power Curve Estimation With Multivariate Environmental Factors for Inland and Offshore Wind Farms," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 56-67, March.
- Jursa, René & Rohrig, Kurt, 2008. "Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 694-709.
- Pierre-Julien Trombe & Pierre Pinson & Henrik Madsen, 2012. "A General Probabilistic Forecasting Framework for Offshore Wind Power Fluctuations," Energies, MDPI, vol. 5(3), pages 1-37, March.
- Kou, Peng & Gao, Feng & Guan, Xiaohong, 2013. "Sparse online warped Gaussian process for wind power probabilistic forecasting," Applied Energy, Elsevier, vol. 108(C), pages 410-428.
- Zhang, Yu & Li, Yanting & Zhang, Guangyao, 2020. "Short-term wind power forecasting approach based on Seq2Seq model using NWP data," Energy, Elsevier, vol. 213(C).
- Shi, Jing & Guo, Jinmei & Zheng, Songtao, 2012. "Evaluation of hybrid forecasting approaches for wind speed and power generation time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3471-3480.
- Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.