My bibliography
Save this item
Second law analysis in heat transfer
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shamshiri, Mehdi & Khazaeli, Reza & Ashrafizaadeh, Mahmud & Mortazavi, Saeed, 2012. "Heat transfer and entropy generation analyses associated with mixed electrokinetically induced and pressure-driven power-law microflows," Energy, Elsevier, vol. 42(1), pages 157-169.
- Arikoglu, Aytac & Ozkol, Ibrahim & Komurgoz, Guven, 2008. "Effect of slip on entropy generation in a single rotating disk in MHD flow," Applied Energy, Elsevier, vol. 85(12), pages 1225-1236, December.
- Kumar, A. & Tripathi, R. & Singh, R. & Chaurasiya, V.K., 2020. "Simultaneous effects of nonlinear thermal radiation and Joule heating on the flow of Williamson nanofluid with entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
- Li, Yi-Xia & Qayyum, Sumaira & Khan, M. Ijaz & Elmasry, Yasser & Chu, Yu-Ming, 2021. "Motion of hybrid nanofluid (MnZnFe2O4–NiZnFe2O4–H2O) with homogeneous–heterogeneous reaction: Marangoni convection," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1379-1391.
- Li, Puxi & Xiao, Ruofu & Tao, Ran, 2022. "Study of vortex rope based on flow energy dissipation and vortex identification," Renewable Energy, Elsevier, vol. 198(C), pages 1065-1081.
- Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
- Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
- Kumar, Vinay & Murthy, S.V.S.S.N.V.G. Krishna & Kumar, B.V. Rathish, 2023. "Multi-force effect on fluid flow, heat and mass transfer, and entropy generation in a stratified fluid-saturated porous enclosure," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 328-367.
- Zhang, Yanfeng & Jiang, Chen & Shou, Binan & Zhou, Wenxue & Zhang, Zhifeng & Wang, Shuang & Bai, Bofeng, 2018. "A quantitative energy efficiency evaluation and grading of plate heat exchangers," Energy, Elsevier, vol. 142(C), pages 228-233.
- Mousapour, Ashkan & Hajipour, Alireza & Rashidi, Mohammad Mehdi & Freidoonimehr, Navid, 2016. "Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction," Energy, Elsevier, vol. 94(C), pages 100-109.
- Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Advantages and disadvantages associated with introducing an extra rarefied gas layer into a rotating microsystem filled with a liquid lubricant: First and second law analyses," Energy, Elsevier, vol. 45(1), pages 716-728.
- Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
- Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Effects of rarefaction, viscous dissipation and rotation mode on the first and second law analyses of rarefied gaseous slip flows confined between a rotating shaft and its concentric housing," Energy, Elsevier, vol. 37(1), pages 359-370.
- Mahmud, Shohel & Fraser, Roydon Andrew, 2006. "Second law analysis of forced convection in a circular duct for non-Newtonian fluids," Energy, Elsevier, vol. 31(12), pages 2226-2244.
- Adesanya, Samuel O. & Dairo, O.F. & Yusuf, T.A. & Onanaye, A.S. & Arekete, S.A., 2020. "Thermodynamics analysis for a heated gravity-driven hydromagnetic couple stress film with viscous dissipation effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
- Ranjit, N.K. & Shit, G.C., 2017. "Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment," Energy, Elsevier, vol. 128(C), pages 649-660.
- Khan, M. Ijaz & Alzahrani, Faris, 2022. "Optimized framework for slip flow of viscous fluid towards a curved surface with viscous dissipation and Joule heating features," Applied Mathematics and Computation, Elsevier, vol. 417(C).
- Ibáñez, Guillermo & López, Aracely & Pantoja, Joel & Moreira, Joel & Reyes, Juan A., 2013. "Optimum slip flow based on the minimization of entropy generation in parallel plate microchannels," Energy, Elsevier, vol. 50(C), pages 143-149.
- Wu, Shuang-Ying & Li, You-Rong & Chen, Yan & Xiao, Lan, 2007. "Exergy transfer characteristics of forced convective heat transfer through a duct with constant wall temperature," Energy, Elsevier, vol. 32(12), pages 2385-2395.
- Ibáñez, Guillermo & Cuevas, Sergio, 2010. "Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel," Energy, Elsevier, vol. 35(10), pages 4149-4155.
- Guo, Jiangfeng & Huai, Xiulan & Li, Xunfeng & Cai, Jun & Wang, Yongwei, 2013. "Multi-objective optimization of heat exchanger based on entransy dissipation theory in an irreversible Brayton cycle system," Energy, Elsevier, vol. 63(C), pages 95-102.
- Biswal, Pratibha & Basak, Tanmay, 2017. "Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1412-1457.
- Srinivasacharya, D. & Bindu, K. Hima, 2016. "Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions," Energy, Elsevier, vol. 111(C), pages 165-177.
- Gaikwad, Harshad Sanjay & Basu, Dipankar Narayan & Mondal, Pranab Kumar, 2017. "Non-linear drag induced irreversibility minimization in a viscous dissipative flow through a micro-porous channel," Energy, Elsevier, vol. 119(C), pages 588-600.
- Huda Alfannakh & Basma Souayeh & Najib Hdhiri & Muneerah Al Nuwairan & Muayad Al-Shaeli, 2022. "Entropy Generation and Natural Convection Heat Transfer of (MWCNT/SWCNT) Nanoparticles around Two Spaced Spheres over Inclined Plates: Numerical Study," Energies, MDPI, vol. 15(7), pages 1-31, April.
- Khan, M. Ijaz & Alzahrani, Faris, 2021. "Nonlinear dissipative slip flow of Jeffrey nanomaterial towards a curved surface with entropy generation and activation energy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 47-61.
- Alsaedi, A. & Khan, Sohail A. & Hayat, T., 2023. "A model development for thermal and solutal transport analysis in radiating entropy optimized and magnetized flow of nanomaterial by convectively heated stretched surface," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
- Renuka, A. & Muthtamilselvan, M. & Doh, Deog-Hee & Cho, Gyeong-Rae, 2020. "Entropy analysis and nanofluid past a double stretchable spinning disk using Homotopy Analysis Method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 152-169.
- San, J.-Y., 2010. "Second-law performance of heat exchangers for waste heat recovery," Energy, Elsevier, vol. 35(5), pages 1936-1945.
- Han, Yong & Wang, Xue-sheng & Zhang, Zhao & Zhang, Hao-nan, 2020. "Multi-objective optimization of geometric parameters for the helically coiled tube using Markowitz optimization theory," Energy, Elsevier, vol. 192(C).
- Matin, Meisam Habibi & Khan, Waqar Ahmed, 2013. "Entropy generation analysis of heat and mass transfer in mixed electrokinetically and pressure driven flow through a slit microchannel," Energy, Elsevier, vol. 56(C), pages 207-217.
- Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
- Xu, Mingtian, 2011. "The thermodynamic basis of entransy and entransy dissipation," Energy, Elsevier, vol. 36(7), pages 4272-4277.
- Mohammadi, Iman & Ajam, Hossein, 2019. "A theoretical study of entropy generation of the combustion phenomenon in the porous medium burner," Energy, Elsevier, vol. 188(C).
- Xu, Sheng-Zhi & Guo, Zeng-Yuan, 2021. "Entransy transfer analysis methodology for energy conversion systems operating with thermodynamic cycles," Energy, Elsevier, vol. 224(C).
- Khaliq, Abdul, 2004. "Thermodynamic optimization of laminar viscous flow under convective heat-transfer through an isothermal walled duct," Applied Energy, Elsevier, vol. 78(3), pages 289-304, July.
- Khan, Mair & Salahuddin, T. & Lv, Yu-Pei, 2021. "Entropy study in the von Kármán model with variable thermo-physical properties and radiation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
- Xie, Zhi-Yong & Jian, Yong-Jun, 2017. "Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels," Energy, Elsevier, vol. 139(C), pages 1080-1093.
- Khan, Sohail A. & Hayat, T. & Alsaedi, A. & Ahmad, B., 2021. "Melting heat transportation in radiative flow of nanomaterials with irreversibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Khan, Sohail A. & Hayat, T. & Alsaedi, A., 2022. "Irreversibility analysis for nanofluid (NiZnFe2O4-C8H18 and MnZnFe2O4-C8H18) flow with radiation effect," Applied Mathematics and Computation, Elsevier, vol. 419(C).
- Samuel O. Adesanya & J. A. Falade & J. C. Ukaegbu & K. S. Adekeye, 2016. "Mathematical Analysis of a Reactive Viscous Flow through a Channel Filled with a Porous Medium," Journal of Mathematics, Hindawi, vol. 2016, pages 1-8, December.
- Mondal, Pranab Kumar & Dholey, Shibdas, 2015. "Effect of conjugate heat transfer on the irreversibility generation rate in a combined Couette–Poiseuille flow between asymmetrically heated parallel plates: The entropy minimization analysis," Energy, Elsevier, vol. 83(C), pages 55-64.
- Adesanya, Samuel O. & Kareem, Semiu O. & Falade, John A. & Arekete, Samson A., 2015. "Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material," Energy, Elsevier, vol. 93(P1), pages 1239-1245.