IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v171y2020icp152-169.html
   My bibliography  Save this article

Entropy analysis and nanofluid past a double stretchable spinning disk using Homotopy Analysis Method

Author

Listed:
  • Renuka, A.
  • Muthtamilselvan, M.
  • Doh, Deog-Hee
  • Cho, Gyeong-Rae

Abstract

The motivation of this current study is finding the viscous dissipation and Joule heating effect on the entropy analysis and flow of nanofluid through a two stretchable rotating disk using Buongiorno’s model. The geometry is considered as nanofluid filled with porous medium. Further, energy equation has been constructed by taking heat generation/absorption and radiation effects into consideration. Similarity transformations are utilized to convert the system of governing equations. The mathematical equations are solved numerically using homotopy analysis method. Thus, the impact of various applicable parameters is presented graphically through various profiles. Moreover, the rate of entropy generation decays for larger temperature ratio meanwhile opposite behavior is obtained on Bejan number. The rate of heat transport elevates at upper disk when we increase Eckert number and Reynolds number. Also rate of heat transport volume hikes with higher radiation parameter at lower and upper disk.

Suggested Citation

  • Renuka, A. & Muthtamilselvan, M. & Doh, Deog-Hee & Cho, Gyeong-Rae, 2020. "Entropy analysis and nanofluid past a double stretchable spinning disk using Homotopy Analysis Method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 152-169.
  • Handle: RePEc:eee:matcom:v:171:y:2020:i:c:p:152-169
    DOI: 10.1016/j.matcom.2019.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475419301570
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2019.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bejan, Adrian, 1980. "Second law analysis in heat transfer," Energy, Elsevier, vol. 5(8), pages 720-732.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. ur Rahman, Mujeeb & Hayat, Tasawar & Khan, Sohail A. & Alsaedi, A., 2022. "Entropy generation in Sutterby nanomaterials flow due to rotating disk with radiation and magnetic effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 151-165.
    2. Bhandari, Anupam, 2020. "Study of ferrofluid flow in a rotating system through mathematical modeling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 290-306.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
    2. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Effects of rarefaction, viscous dissipation and rotation mode on the first and second law analyses of rarefied gaseous slip flows confined between a rotating shaft and its concentric housing," Energy, Elsevier, vol. 37(1), pages 359-370.
    3. Matin, Meisam Habibi & Khan, Waqar Ahmed, 2013. "Entropy generation analysis of heat and mass transfer in mixed electrokinetically and pressure driven flow through a slit microchannel," Energy, Elsevier, vol. 56(C), pages 207-217.
    4. Khaliq, Abdul, 2004. "Thermodynamic optimization of laminar viscous flow under convective heat-transfer through an isothermal walled duct," Applied Energy, Elsevier, vol. 78(3), pages 289-304, July.
    5. Adesanya, Samuel O. & Kareem, Semiu O. & Falade, John A. & Arekete, Samson A., 2015. "Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material," Energy, Elsevier, vol. 93(P1), pages 1239-1245.
    6. Ibáñez, Guillermo & Cuevas, Sergio, 2010. "Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel," Energy, Elsevier, vol. 35(10), pages 4149-4155.
    7. Khan, Sohail A. & Hayat, T. & Alsaedi, A. & Ahmad, B., 2021. "Melting heat transportation in radiative flow of nanomaterials with irreversibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    8. Gaikwad, Harshad Sanjay & Basu, Dipankar Narayan & Mondal, Pranab Kumar, 2017. "Non-linear drag induced irreversibility minimization in a viscous dissipative flow through a micro-porous channel," Energy, Elsevier, vol. 119(C), pages 588-600.
    9. Mohammadi, Iman & Ajam, Hossein, 2019. "A theoretical study of entropy generation of the combustion phenomenon in the porous medium burner," Energy, Elsevier, vol. 188(C).
    10. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Advantages and disadvantages associated with introducing an extra rarefied gas layer into a rotating microsystem filled with a liquid lubricant: First and second law analyses," Energy, Elsevier, vol. 45(1), pages 716-728.
    11. Srinivasacharya, D. & Bindu, K. Hima, 2016. "Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions," Energy, Elsevier, vol. 111(C), pages 165-177.
    12. Alsaedi, A. & Khan, Sohail A. & Hayat, T., 2023. "A model development for thermal and solutal transport analysis in radiating entropy optimized and magnetized flow of nanomaterial by convectively heated stretched surface," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    13. Samuel O. Adesanya & J. A. Falade & J. C. Ukaegbu & K. S. Adekeye, 2016. "Mathematical Analysis of a Reactive Viscous Flow through a Channel Filled with a Porous Medium," Journal of Mathematics, Hindawi, vol. 2016, pages 1-8, December.
    14. Mousapour, Ashkan & Hajipour, Alireza & Rashidi, Mohammad Mehdi & Freidoonimehr, Navid, 2016. "Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction," Energy, Elsevier, vol. 94(C), pages 100-109.
    15. San, J.-Y., 2010. "Second-law performance of heat exchangers for waste heat recovery," Energy, Elsevier, vol. 35(5), pages 1936-1945.
    16. Arikoglu, Aytac & Ozkol, Ibrahim & Komurgoz, Guven, 2008. "Effect of slip on entropy generation in a single rotating disk in MHD flow," Applied Energy, Elsevier, vol. 85(12), pages 1225-1236, December.
    17. Biswal, Pratibha & Basak, Tanmay, 2017. "Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1412-1457.
    18. Mahmud, Shohel & Fraser, Roydon Andrew, 2006. "Second law analysis of forced convection in a circular duct for non-Newtonian fluids," Energy, Elsevier, vol. 31(12), pages 2226-2244.
    19. Wu, Shuang-Ying & Li, You-Rong & Chen, Yan & Xiao, Lan, 2007. "Exergy transfer characteristics of forced convective heat transfer through a duct with constant wall temperature," Energy, Elsevier, vol. 32(12), pages 2385-2395.
    20. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:171:y:2020:i:c:p:152-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.