IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v128y2017icp649-660.html
   My bibliography  Save this article

Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment

Author

Listed:
  • Ranjit, N.K.
  • Shit, G.C.

Abstract

The entropy generation in a narrow fluidic channel induced by a uniform peristaltic wave under electrokinetic force and magnetic field is investigated. The governing equations for electromagnetohydrodynamic problem are simplified under the framework of Debye-Hückel linearization approximation as well as the long wave length and low Reynolds number assumptions. The heat transfer characteristic in a microfluidic device is analyzed in the presence of Joule heating effects and viscous dissipation due to fluid friction and magnetic field formalism using thermal boundary conditions. The analytical expression for axial velocity, temperature, pressure distribution, the Nusselt number and Bejan number have been estimated and their numerical solutions appraised for diverse values of the parameters approaching into the problem. The study puts forward an important observation that the entropy generation number attains maximum value in the region close to the walls of the channel, while it gains minimum value near the central region of the channel. The overall pumping performance can be enhanced with suitably adjusting magnetic field strength.

Suggested Citation

  • Ranjit, N.K. & Shit, G.C., 2017. "Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment," Energy, Elsevier, vol. 128(C), pages 649-660.
  • Handle: RePEc:eee:energy:v:128:y:2017:i:c:p:649-660
    DOI: 10.1016/j.energy.2017.04.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217306047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shit, G.C. & Mondal, A. & Sinha, A. & Kundu, P.K., 2016. "Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1040-1057.
    2. Tasawar Hayat & Maryam Shafique & Anum Tanveer & Ahmed Alsaedi, 2016. "Radiative Peristaltic Flow of Jeffrey Nanofluid with Slip Conditions and Joule Heating," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-11, February.
    3. Escandón, J. & Bautista, O. & Méndez, F., 2013. "Entropy generation in purely electroosmotic flows of non-Newtonian fluids in a microchannel," Energy, Elsevier, vol. 55(C), pages 486-496.
    4. Abbassi, H., 2007. "Entropy generation analysis in a uniformly heated microchannel heat sink," Energy, Elsevier, vol. 32(10), pages 1932-1947.
    5. Makinde, O.D., 2008. "Entropy-generation analysis for variable-viscosity channel flow with non-uniform wall temperature," Applied Energy, Elsevier, vol. 85(5), pages 384-393, May.
    6. Bejan, Adrian, 1980. "Second law analysis in heat transfer," Energy, Elsevier, vol. 5(8), pages 720-732.
    7. Adesanya, Samuel O. & Makinde, Oluwole D., 2015. "Irreversibility analysis in a couple stress film flow along an inclined heated plate with adiabatic free surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 222-229.
    8. Adesanya, Samuel O. & Kareem, Semiu O. & Falade, John A. & Arekete, Samson A., 2015. "Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material," Energy, Elsevier, vol. 93(P1), pages 1239-1245.
    9. Abu-Hijleh, B.A/K & Abu-Qudais, M & Abu Nada, E, 1999. "Numerical prediction of entropy generation due to natural convection from a horizontal cylinder," Energy, Elsevier, vol. 24(4), pages 327-333.
    10. Akbar, Noreen Sher, 2015. "Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field," Energy, Elsevier, vol. 82(C), pages 23-30.
    11. Anand, Vishal, 2014. "Slip law effects on heat transfer and entropy generation of pressure driven flow of a power law fluid in a microchannel under uniform heat flux boundary condition," Energy, Elsevier, vol. 76(C), pages 716-732.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yongbo & Jian, Yongjun & Yang, Chunhong, 2020. "Electrochemomechanical energy conversion efficiency in curved rectangular nanochannels," Energy, Elsevier, vol. 198(C).
    2. Balaram Kundu & Sujit Saha, 2022. "Review and Analysis of Electro-Magnetohydrodynamic Flow and Heat Transport in Microchannels," Energies, MDPI, vol. 15(19), pages 1-51, September.
    3. Nazeer, Mubbashar & Hussain, Farooq & Khan, M. Ijaz & Asad-ur-Rehman, & El-Zahar, Essam Roshdy & Chu, Yu-Ming & Malik, M.Y., 2022. "Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    4. Abdulwahed Muaybid A. Alrashdi, 2023. "Peristalsis of Nanofluids via an Inclined Asymmetric Channel with Hall Effects and Entropy Generation Analysis," Mathematics, MDPI, vol. 11(2), pages 1-29, January.
    5. Xie, Zhi-Yong & Jian, Yong-Jun, 2017. "Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels," Energy, Elsevier, vol. 139(C), pages 1080-1093.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Zhi-Yong & Jian, Yong-Jun, 2017. "Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels," Energy, Elsevier, vol. 139(C), pages 1080-1093.
    2. Gaikwad, Harshad Sanjay & Basu, Dipankar Narayan & Mondal, Pranab Kumar, 2017. "Non-linear drag induced irreversibility minimization in a viscous dissipative flow through a micro-porous channel," Energy, Elsevier, vol. 119(C), pages 588-600.
    3. Ibáñez, Guillermo & López, Aracely & Pantoja, Joel & Moreira, Joel & Reyes, Juan A., 2013. "Optimum slip flow based on the minimization of entropy generation in parallel plate microchannels," Energy, Elsevier, vol. 50(C), pages 143-149.
    4. Hassan, Anthony R., 2020. "The entropy generation analysis of a reactive hydromagnetic couple stress fluid flow through a saturated porous channel," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    5. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Advantages and disadvantages associated with introducing an extra rarefied gas layer into a rotating microsystem filled with a liquid lubricant: First and second law analyses," Energy, Elsevier, vol. 45(1), pages 716-728.
    6. Srinivasacharya, D. & Bindu, K. Hima, 2016. "Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions," Energy, Elsevier, vol. 111(C), pages 165-177.
    7. Samuel O. Adesanya & J. A. Falade & J. C. Ukaegbu & K. S. Adekeye, 2016. "Mathematical Analysis of a Reactive Viscous Flow through a Channel Filled with a Porous Medium," Journal of Mathematics, Hindawi, vol. 2016, pages 1-8, December.
    8. Srinivasacharya, D. & Hima Bindu, K., 2015. "Entropy generation in a micropolar fluid flow through an inclined channel with slip and convective boundary conditions," Energy, Elsevier, vol. 91(C), pages 72-83.
    9. Shamshiri, Mehdi & Khazaeli, Reza & Ashrafizaadeh, Mahmud & Mortazavi, Saeed, 2012. "Heat transfer and entropy generation analyses associated with mixed electrokinetically induced and pressure-driven power-law microflows," Energy, Elsevier, vol. 42(1), pages 157-169.
    10. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Effects of rarefaction, viscous dissipation and rotation mode on the first and second law analyses of rarefied gaseous slip flows confined between a rotating shaft and its concentric housing," Energy, Elsevier, vol. 37(1), pages 359-370.
    11. Adesanya, Samuel O. & Kareem, Semiu O. & Falade, John A. & Arekete, Samson A., 2015. "Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material," Energy, Elsevier, vol. 93(P1), pages 1239-1245.
    12. Ibáñez, Guillermo & Cuevas, Sergio, 2010. "Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel," Energy, Elsevier, vol. 35(10), pages 4149-4155.
    13. Biswal, Pratibha & Basak, Tanmay, 2017. "Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1412-1457.
    14. Chee, Yi Shen & Ting, Tiew Wei & Hung, Yew Mun, 2015. "Entropy generation of viscous dissipative flow in thermal non-equilibrium porous media with thermal asymmetries," Energy, Elsevier, vol. 89(C), pages 382-401.
    15. Basak, Tanmay & Anandalakshmi, R. & Kumar, Pushpendra & Roy, S., 2012. "Entropy generation vs energy flow due to natural convection in a trapezoidal cavity with isothermal and non-isothermal hot bottom wall," Energy, Elsevier, vol. 37(1), pages 514-532.
    16. Akbar, Noreen Sher, 2015. "Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field," Energy, Elsevier, vol. 82(C), pages 23-30.
    17. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
    18. Liu, Di & Zhao, Fu-Yun & Wang, Han-Qing, 2011. "Passive heat and moisture removal from a natural vented enclosure with a massive wall," Energy, Elsevier, vol. 36(5), pages 2867-2882.
    19. Sharma, A. & Tripathi, D. & Sharma, R.K. & Tiwari, A.K., 2019. "Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    20. Khaliq, Abdul, 2004. "Thermodynamic optimization of laminar viscous flow under convective heat-transfer through an isothermal walled duct," Applied Energy, Elsevier, vol. 78(3), pages 289-304, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:128:y:2017:i:c:p:649-660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.