IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v85y2008i12p1225-1236.html
   My bibliography  Save this article

Effect of slip on entropy generation in a single rotating disk in MHD flow

Author

Listed:
  • Arikoglu, Aytac
  • Ozkol, Ibrahim
  • Komurgoz, Guven

Abstract

In the present study, the effect of slip on entropy generation in magnetohydrodynamic (MHD) flow over a rotating disk is investigated by semi-numerical analytical solution technique. The nonlinear governing equations of flow and thermal fields are reduced to ordinary differential equations by the Von Karman approach, then solved via differential transform method (DTM), a recently-developed, powerful analytical method. Related entropy generation equations are derived and nondimensionalized using geometrical and physical flow field-dependent parameters. For a rotating surface the form of slip introduced into the governing equations is rarefaction. For comparison, slip and no-slip regimes in the range 0.1 > Kn > 0 and their interaction with magnetic effects are investigated by minimum entropy generation. While minimizing entropy generation, equipartitioning is encountered between fluid friction irreversibility and Joule dissipation.

Suggested Citation

  • Arikoglu, Aytac & Ozkol, Ibrahim & Komurgoz, Guven, 2008. "Effect of slip on entropy generation in a single rotating disk in MHD flow," Applied Energy, Elsevier, vol. 85(12), pages 1225-1236, December.
  • Handle: RePEc:eee:appene:v:85:y:2008:i:12:p:1225-1236
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00066-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johannessen, Eivind & Røsjorde, Audun, 2007. "Equipartition of entropy production as an approximation to the state of minimum entropy production in diabatic distillation," Energy, Elsevier, vol. 32(4), pages 467-473.
    2. Mahmud, Shohel & Fraser, Roydon Andrew, 2003. "Mixed convection–radiation interaction in a vertical porous channel: Entropy generation," Energy, Elsevier, vol. 28(15), pages 1557-1577.
    3. Bejan, Adrian, 1980. "Second law analysis in heat transfer," Energy, Elsevier, vol. 5(8), pages 720-732.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shamshiri, Mehdi & Khazaeli, Reza & Ashrafizaadeh, Mahmud & Mortazavi, Saeed, 2012. "Heat transfer and entropy generation analyses associated with mixed electrokinetically induced and pressure-driven power-law microflows," Energy, Elsevier, vol. 42(1), pages 157-169.
    2. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Advantages and disadvantages associated with introducing an extra rarefied gas layer into a rotating microsystem filled with a liquid lubricant: First and second law analyses," Energy, Elsevier, vol. 45(1), pages 716-728.
    3. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Effects of rarefaction, viscous dissipation and rotation mode on the first and second law analyses of rarefied gaseous slip flows confined between a rotating shaft and its concentric housing," Energy, Elsevier, vol. 37(1), pages 359-370.
    4. Tipole, Pralhad & Karthikeyan, A. & Bhojwani, Virendra & Patil, Abhay & Oak, Ninad & Ponatil, Amal & Nagori, Palash, 2016. "Applying a magnetic field on liquid line of vapour compression system is a novel technique to increase a performance of the system," Applied Energy, Elsevier, vol. 182(C), pages 376-382.
    5. Rashidi, M.M. & Ali, M. & Freidoonimehr, N. & Nazari, F., 2013. "Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm," Energy, Elsevier, vol. 55(C), pages 497-510.
    6. Khan, Mair & Salahuddin, T. & Lv, Yu-Pei, 2021. "Entropy study in the von Kármán model with variable thermo-physical properties and radiation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Nghi & Demirel, Yaşar, 2010. "Retrofit of distillation columns in biodiesel production plants," Energy, Elsevier, vol. 35(4), pages 1625-1632.
    2. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
    3. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Effects of rarefaction, viscous dissipation and rotation mode on the first and second law analyses of rarefied gaseous slip flows confined between a rotating shaft and its concentric housing," Energy, Elsevier, vol. 37(1), pages 359-370.
    4. Matin, Meisam Habibi & Khan, Waqar Ahmed, 2013. "Entropy generation analysis of heat and mass transfer in mixed electrokinetically and pressure driven flow through a slit microchannel," Energy, Elsevier, vol. 56(C), pages 207-217.
    5. Khaliq, Abdul, 2004. "Thermodynamic optimization of laminar viscous flow under convective heat-transfer through an isothermal walled duct," Applied Energy, Elsevier, vol. 78(3), pages 289-304, July.
    6. Adesanya, Samuel O. & Kareem, Semiu O. & Falade, John A. & Arekete, Samson A., 2015. "Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material," Energy, Elsevier, vol. 93(P1), pages 1239-1245.
    7. Ibáñez, Guillermo & Cuevas, Sergio, 2010. "Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel," Energy, Elsevier, vol. 35(10), pages 4149-4155.
    8. Adesanya, Samuel O. & Makinde, Oluwole D., 2015. "Irreversibility analysis in a couple stress film flow along an inclined heated plate with adiabatic free surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 222-229.
    9. Khan, Sohail A. & Hayat, T. & Alsaedi, A. & Ahmad, B., 2021. "Melting heat transportation in radiative flow of nanomaterials with irreversibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    10. Gaikwad, Harshad Sanjay & Basu, Dipankar Narayan & Mondal, Pranab Kumar, 2017. "Non-linear drag induced irreversibility minimization in a viscous dissipative flow through a micro-porous channel," Energy, Elsevier, vol. 119(C), pages 588-600.
    11. Mohammadi, Iman & Ajam, Hossein, 2019. "A theoretical study of entropy generation of the combustion phenomenon in the porous medium burner," Energy, Elsevier, vol. 188(C).
    12. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Advantages and disadvantages associated with introducing an extra rarefied gas layer into a rotating microsystem filled with a liquid lubricant: First and second law analyses," Energy, Elsevier, vol. 45(1), pages 716-728.
    13. Srinivasacharya, D. & Bindu, K. Hima, 2016. "Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions," Energy, Elsevier, vol. 111(C), pages 165-177.
    14. Alsaedi, A. & Khan, Sohail A. & Hayat, T., 2023. "A model development for thermal and solutal transport analysis in radiating entropy optimized and magnetized flow of nanomaterial by convectively heated stretched surface," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    15. Samuel O. Adesanya & J. A. Falade & J. C. Ukaegbu & K. S. Adekeye, 2016. "Mathematical Analysis of a Reactive Viscous Flow through a Channel Filled with a Porous Medium," Journal of Mathematics, Hindawi, vol. 2016, pages 1-8, December.
    16. Mousapour, Ashkan & Hajipour, Alireza & Rashidi, Mohammad Mehdi & Freidoonimehr, Navid, 2016. "Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction," Energy, Elsevier, vol. 94(C), pages 100-109.
    17. Kim, Young Han, 2014. "Application of partially diabatic divided wall column to floating liquefied natural gas plant," Energy, Elsevier, vol. 70(C), pages 435-443.
    18. San, J.-Y., 2010. "Second-law performance of heat exchangers for waste heat recovery," Energy, Elsevier, vol. 35(5), pages 1936-1945.
    19. Biswal, Pratibha & Basak, Tanmay, 2017. "Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1412-1457.
    20. Renuka, A. & Muthtamilselvan, M. & Doh, Deog-Hee & Cho, Gyeong-Rae, 2020. "Entropy analysis and nanofluid past a double stretchable spinning disk using Homotopy Analysis Method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 152-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:85:y:2008:i:12:p:1225-1236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.