IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v551y2020ics0378437119322009.html
   My bibliography  Save this article

Simultaneous effects of nonlinear thermal radiation and Joule heating on the flow of Williamson nanofluid with entropy generation

Author

Listed:
  • Kumar, A.
  • Tripathi, R.
  • Singh, R.
  • Chaurasiya, V.K.

Abstract

The present communication addresses the heat and mass transfer mechanism in MHD nanofluid flow of Williamson fluid over a stretching sheet taking the combined effects of Joule heating, nonlinear thermal radiation and viscous dissipation into consideration. For physical relevance we also analyzed the influence of chemical reactions on the flow field. The appropriate transformations are implemented to metamorphose the governing PDEs into a set of coupled ODEs. The shooting technique along with fourth order Runge–Kutta method has been implemented to get the solutions of obtained highly non-linear ODEs. The second law of thermodynamics is implemented to model the equation of entropy generation for the current analysis. Impact of different dominant parameters on velocity, temperature, concentration, entropy generation as well as Bejan number are described through graphs whereas the variation in the skin friction coefficient, heat transfer rate and mass transfer rate are studied using numerical data in the tabular form. It is observed from the obtained numerical data that the rate of heat transfer gets reduced with increase in Eckert number while the thermal radiation parameter tends to enhance it. Increase in Brinkman parameter leads to a rise in entropy generation while it (Brinkman parameter) has an adverse effect on Bejan number.

Suggested Citation

  • Kumar, A. & Tripathi, R. & Singh, R. & Chaurasiya, V.K., 2020. "Simultaneous effects of nonlinear thermal radiation and Joule heating on the flow of Williamson nanofluid with entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
  • Handle: RePEc:eee:phsmap:v:551:y:2020:i:c:s0378437119322009
    DOI: 10.1016/j.physa.2019.123972
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119322009
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bejan, Adrian, 1980. "Second law analysis in heat transfer," Energy, Elsevier, vol. 5(8), pages 720-732.
    2. Dalir, Nemat & Dehsara, Mohammad & Nourazar, S. Salman, 2015. "Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet," Energy, Elsevier, vol. 79(C), pages 351-362.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alsaedi, A. & Khan, Sohail A. & Hayat, T., 2023. "Mixed convective entropy optimized flow of rheological nanoliquid subject to Cattaneo-Christov fluxes: An application to solar energy," Energy, Elsevier, vol. 278(PA).
    2. Song, Ying-Qing & Hamid, Aamir & Khan, M. Ijaz & Gowda, R.J. Punith & Kumar, R. Naveen & Prasannakumara, B.C. & Khan, Sami Ullah & Khan, M. Imran & Malik, M.Y., 2021. "Solar energy aspects of gyrotactic mixed bioconvection flow of nanofluid past a vertical thin moving needle influenced by variable Prandtl number," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
    2. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Effects of rarefaction, viscous dissipation and rotation mode on the first and second law analyses of rarefied gaseous slip flows confined between a rotating shaft and its concentric housing," Energy, Elsevier, vol. 37(1), pages 359-370.
    3. Matin, Meisam Habibi & Khan, Waqar Ahmed, 2013. "Entropy generation analysis of heat and mass transfer in mixed electrokinetically and pressure driven flow through a slit microchannel," Energy, Elsevier, vol. 56(C), pages 207-217.
    4. Khaliq, Abdul, 2004. "Thermodynamic optimization of laminar viscous flow under convective heat-transfer through an isothermal walled duct," Applied Energy, Elsevier, vol. 78(3), pages 289-304, July.
    5. Adesanya, Samuel O. & Kareem, Semiu O. & Falade, John A. & Arekete, Samson A., 2015. "Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material," Energy, Elsevier, vol. 93(P1), pages 1239-1245.
    6. Ibáñez, Guillermo & Cuevas, Sergio, 2010. "Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel," Energy, Elsevier, vol. 35(10), pages 4149-4155.
    7. Khan, Sohail A. & Hayat, T. & Alsaedi, A. & Ahmad, B., 2021. "Melting heat transportation in radiative flow of nanomaterials with irreversibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    8. Gaikwad, Harshad Sanjay & Basu, Dipankar Narayan & Mondal, Pranab Kumar, 2017. "Non-linear drag induced irreversibility minimization in a viscous dissipative flow through a micro-porous channel," Energy, Elsevier, vol. 119(C), pages 588-600.
    9. Mohammadi, Iman & Ajam, Hossein, 2019. "A theoretical study of entropy generation of the combustion phenomenon in the porous medium burner," Energy, Elsevier, vol. 188(C).
    10. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Advantages and disadvantages associated with introducing an extra rarefied gas layer into a rotating microsystem filled with a liquid lubricant: First and second law analyses," Energy, Elsevier, vol. 45(1), pages 716-728.
    11. Srinivasacharya, D. & Bindu, K. Hima, 2016. "Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions," Energy, Elsevier, vol. 111(C), pages 165-177.
    12. Alsaedi, A. & Khan, Sohail A. & Hayat, T., 2023. "A model development for thermal and solutal transport analysis in radiating entropy optimized and magnetized flow of nanomaterial by convectively heated stretched surface," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    13. Samuel O. Adesanya & J. A. Falade & J. C. Ukaegbu & K. S. Adekeye, 2016. "Mathematical Analysis of a Reactive Viscous Flow through a Channel Filled with a Porous Medium," Journal of Mathematics, Hindawi, vol. 2016, pages 1-8, December.
    14. Mousapour, Ashkan & Hajipour, Alireza & Rashidi, Mohammad Mehdi & Freidoonimehr, Navid, 2016. "Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction," Energy, Elsevier, vol. 94(C), pages 100-109.
    15. San, J.-Y., 2010. "Second-law performance of heat exchangers for waste heat recovery," Energy, Elsevier, vol. 35(5), pages 1936-1945.
    16. Arikoglu, Aytac & Ozkol, Ibrahim & Komurgoz, Guven, 2008. "Effect of slip on entropy generation in a single rotating disk in MHD flow," Applied Energy, Elsevier, vol. 85(12), pages 1225-1236, December.
    17. Ali, Farhad & Murtaza, Saqib & Sheikh, Nadeem Ahmad & Khan, Ilyas, 2019. "Heat transfer analysis of generalized Jeffery nanofluid in a rotating frame: Atangana–Balaenu and Caputo–Fabrizio fractional models," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 1-15.
    18. Biswal, Pratibha & Basak, Tanmay, 2017. "Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1412-1457.
    19. Renuka, A. & Muthtamilselvan, M. & Doh, Deog-Hee & Cho, Gyeong-Rae, 2020. "Entropy analysis and nanofluid past a double stretchable spinning disk using Homotopy Analysis Method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 152-169.
    20. Mashhour A. Alazwari & Nidal H. Abu-Hamdeh & Marjan Goodarzi, 2021. "Entropy Optimization of First-Grade Viscoelastic Nanofluid Flow over a Stretching Sheet by Using Classical Keller-Box Scheme," Mathematics, MDPI, vol. 9(20), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:551:y:2020:i:c:s0378437119322009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.