IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v63y2013icp95-102.html
   My bibliography  Save this article

Multi-objective optimization of heat exchanger based on entransy dissipation theory in an irreversible Brayton cycle system

Author

Listed:
  • Guo, Jiangfeng
  • Huai, Xiulan
  • Li, Xunfeng
  • Cai, Jun
  • Wang, Yongwei

Abstract

A multi-objective optimization of main heat exchanger in a regenerative Brayton cycle system is carried out based on entransy dissipation. The best trade-off between the entransy dissipation numbers caused by heat transfer and fluid friction is achieved in the Pareto optimal solutions, the decrease of entransy dissipation related to heat transfer inevitably leads to the increase of entransy dissipation due to fluid friction, and vice versa. The entransy dissipation due to heat transfer rather than that due to fluid friction plays a decisive role in the net work output. The Pareto optimal schemes are widely superior to the random design schemes at both component and system levels. The diversity of Pareto design schemes is very convenient for users to choose the most appropriate design scheme according to the practical needs.

Suggested Citation

  • Guo, Jiangfeng & Huai, Xiulan & Li, Xunfeng & Cai, Jun & Wang, Yongwei, 2013. "Multi-objective optimization of heat exchanger based on entransy dissipation theory in an irreversible Brayton cycle system," Energy, Elsevier, vol. 63(C), pages 95-102.
  • Handle: RePEc:eee:energy:v:63:y:2013:i:c:p:95-102
    DOI: 10.1016/j.energy.2013.10.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213009109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.10.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bejan, Adrian, 1980. "Second law analysis in heat transfer," Energy, Elsevier, vol. 5(8), pages 720-732.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Jiangfeng, 2016. "Design analysis of supercritical carbon dioxide recuperator," Applied Energy, Elsevier, vol. 164(C), pages 21-27.
    2. Chen, Hui & Liu, Ying-wen, 2021. "A new optimization concept of the recuperator based on Hampson-type miniature cryocoolers," Energy, Elsevier, vol. 224(C).
    3. Chen, Hui & Wei, Chen-xi & Ding, Wen-hao & Liu, Ying-wen, 2023. "Optimization of miniature Joule-Thomson cryocooler with non-isometric recuperator on transient characteristics," Energy, Elsevier, vol. 267(C).
    4. Wang, Yanhong & Cao, Lihua & Li, Xingcan & Wang, Jiaxing & Hu, Pengfei & Li, Bo & Li, Yong, 2020. "A novel thermodynamic method and insight of heat transfer characteristics on economizer for supercritical thermal power plant," Energy, Elsevier, vol. 191(C).
    5. Huang, Pingnan & Pan, Minqiang, 2021. "Secondary heat transfer enhancement design of variable cross-section microchannels based on entransy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Sun, Jinxiang & Zhang, Ruibo & Wang, Mingjun & Zhang, Jing & Qiu, Suizheng & Tian, Wenxi & Su, G.H., 2022. "Multi-objective optimization of helical coil steam generator in high temperature gas reactors with genetic algorithm and response surface method," Energy, Elsevier, vol. 259(C).
    7. Guo, Jiangfeng & Song, Jian & Han, Zengxiao & Pervunin, Konstantin S. & Markides, Christos N., 2022. "Investigation of the thermohydraulic characteristics of vertical supercritical CO2 flows at cooling conditions," Energy, Elsevier, vol. 256(C).
    8. Kazimierski, Zbyszko & Wojewoda, Jerzy, 2014. "Heat exchanger operation in the externally heated air valve engine with separated settling chambers," Energy, Elsevier, vol. 74(C), pages 675-681.
    9. Xu, Sheng-Zhi & Guo, Zeng-Yuan, 2021. "Entransy transfer analysis methodology for energy conversion systems operating with thermodynamic cycles," Energy, Elsevier, vol. 224(C).
    10. Cheng, Yang & Li, Yingxiao & Wang, Jinghan & Tam, Lapmou & Chen, Yitung & Wang, Qiuwang & Ma, Ting, 2023. "Multi-objective optimization of printed circuit heat exchanger used for hydrogen cooler by exergoeconomic method," Energy, Elsevier, vol. 262(PA).
    11. Wang, Xiaoyin & Zhao, Xiling & Fu, Lin, 2018. "Entransy analysis of secondary network flow distribution in absorption heat exchanger," Energy, Elsevier, vol. 147(C), pages 428-439.
    12. Yin, Qian & Du, Wen-Jing & Ji, Xing-Lin & Cheng, Lin, 2016. "Optimization design and economic analyses of heat recovery exchangers on rotary kilns," Applied Energy, Elsevier, vol. 180(C), pages 743-756.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
    2. Khaliq, Abdul, 2004. "Thermodynamic optimization of laminar viscous flow under convective heat-transfer through an isothermal walled duct," Applied Energy, Elsevier, vol. 78(3), pages 289-304, July.
    3. Gaikwad, Harshad Sanjay & Basu, Dipankar Narayan & Mondal, Pranab Kumar, 2017. "Non-linear drag induced irreversibility minimization in a viscous dissipative flow through a micro-porous channel," Energy, Elsevier, vol. 119(C), pages 588-600.
    4. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Advantages and disadvantages associated with introducing an extra rarefied gas layer into a rotating microsystem filled with a liquid lubricant: First and second law analyses," Energy, Elsevier, vol. 45(1), pages 716-728.
    5. Srinivasacharya, D. & Bindu, K. Hima, 2016. "Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions," Energy, Elsevier, vol. 111(C), pages 165-177.
    6. Samuel O. Adesanya & J. A. Falade & J. C. Ukaegbu & K. S. Adekeye, 2016. "Mathematical Analysis of a Reactive Viscous Flow through a Channel Filled with a Porous Medium," Journal of Mathematics, Hindawi, vol. 2016, pages 1-8, December.
    7. Mousapour, Ashkan & Hajipour, Alireza & Rashidi, Mohammad Mehdi & Freidoonimehr, Navid, 2016. "Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction," Energy, Elsevier, vol. 94(C), pages 100-109.
    8. Arikoglu, Aytac & Ozkol, Ibrahim & Komurgoz, Guven, 2008. "Effect of slip on entropy generation in a single rotating disk in MHD flow," Applied Energy, Elsevier, vol. 85(12), pages 1225-1236, December.
    9. Mahmud, Shohel & Fraser, Roydon Andrew, 2006. "Second law analysis of forced convection in a circular duct for non-Newtonian fluids," Energy, Elsevier, vol. 31(12), pages 2226-2244.
    10. Wu, Shuang-Ying & Li, You-Rong & Chen, Yan & Xiao, Lan, 2007. "Exergy transfer characteristics of forced convective heat transfer through a duct with constant wall temperature," Energy, Elsevier, vol. 32(12), pages 2385-2395.
    11. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    12. Kumar, A. & Tripathi, R. & Singh, R. & Chaurasiya, V.K., 2020. "Simultaneous effects of nonlinear thermal radiation and Joule heating on the flow of Williamson nanofluid with entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    13. Huda Alfannakh & Basma Souayeh & Najib Hdhiri & Muneerah Al Nuwairan & Muayad Al-Shaeli, 2022. "Entropy Generation and Natural Convection Heat Transfer of (MWCNT/SWCNT) Nanoparticles around Two Spaced Spheres over Inclined Plates: Numerical Study," Energies, MDPI, vol. 15(7), pages 1-31, April.
    14. Han, Yong & Wang, Xue-sheng & Zhang, Zhao & Zhang, Hao-nan, 2020. "Multi-objective optimization of geometric parameters for the helically coiled tube using Markowitz optimization theory," Energy, Elsevier, vol. 192(C).
    15. Khan, M. Ijaz & Alzahrani, Faris, 2022. "Optimized framework for slip flow of viscous fluid towards a curved surface with viscous dissipation and Joule heating features," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    16. Mondal, Pranab Kumar & Dholey, Shibdas, 2015. "Effect of conjugate heat transfer on the irreversibility generation rate in a combined Couette–Poiseuille flow between asymmetrically heated parallel plates: The entropy minimization analysis," Energy, Elsevier, vol. 83(C), pages 55-64.
    17. Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
    18. Shamshiri, Mehdi & Khazaeli, Reza & Ashrafizaadeh, Mahmud & Mortazavi, Saeed, 2012. "Heat transfer and entropy generation analyses associated with mixed electrokinetically induced and pressure-driven power-law microflows," Energy, Elsevier, vol. 42(1), pages 157-169.
    19. Khan, M. Ijaz & Alzahrani, Faris, 2021. "Nonlinear dissipative slip flow of Jeffrey nanomaterial towards a curved surface with entropy generation and activation energy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 47-61.
    20. Ranjit, N.K. & Shit, G.C., 2017. "Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment," Energy, Elsevier, vol. 128(C), pages 649-660.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:63:y:2013:i:c:p:95-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.