My bibliography
Save this item
Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Yi & Von Krannichfeldt, Leandro & Zufferey, Thierry & Toubeau, Jean-François, 2021. "Short-term nodal voltage forecasting for power distribution grids: An ensemble learning approach," Applied Energy, Elsevier, vol. 304(C).
- Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
- Truong Ngoc Cuong & Le Ngoc Bao Long & Hwan-Seong Kim & Sam-Sang You, 2023. "Data analytics and throughput forecasting in port management systems against disruptions: a case study of Busan Port," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 61-89, March.
- Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021.
"Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark,"
Applied Energy, Elsevier, vol. 293(C).
- Jesus Lago & Grzegorz Marcjasz & Bart De Schutter & Rafa{l} Weron, 2020. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Papers 2008.08004, arXiv.org, revised Dec 2020.
- Pala, Zeydin, 2023. "Comparative study on monthly natural gas vehicle fuel consumption and industrial consumption using multi-hybrid forecast models," Energy, Elsevier, vol. 263(PC).
- Xiong, Xiaoping & Qing, Guohua, 2023. "A hybrid day-ahead electricity price forecasting framework based on time series," Energy, Elsevier, vol. 264(C).
- Lu, Renzhi & Bai, Ruichang & Huang, Yuan & Li, Yuting & Jiang, Junhui & Ding, Yuemin, 2021. "Data-driven real-time price-based demand response for industrial facilities energy management," Applied Energy, Elsevier, vol. 283(C).
- Amin Aminimehr & Ali Raoofi & Akbar Aminimehr & Amirhossein Aminimehr, 2022. "A Comprehensive Study of Market Prediction from Efficient Market Hypothesis up to Late Intelligent Market Prediction Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 781-815, August.
- Yangrui Zhang & Peng Tao & Xiangming Wu & Chenguang Yang & Guang Han & Hui Zhou & Yinlong Hu, 2022. "Hourly Electricity Price Prediction for Electricity Market with High Proportion of Wind and Solar Power," Energies, MDPI, vol. 15(4), pages 1-13, February.
- Yin, Linfei & Wu, Yunzhi, 2022. "Mode-decomposition memory reinforcement network strategy for smart generation control in multi-area power systems containing renewable energy," Applied Energy, Elsevier, vol. 307(C).
- Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.
- He Jiang & Yao Dong & Jianzhou Wang, 2024. "Electricity price forecasting using quantile regression averaging with nonconvex regularization," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1859-1879, September.
- Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.
- Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
- Szabolcs Kováč & German Micha’čonok & Igor Halenár & Pavel Važan, 2021. "Comparison of Heat Demand Prediction Using Wavelet Analysis and Neural Network for a District Heating Network," Energies, MDPI, vol. 14(6), pages 1-20, March.
- Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Athanasios Ioannis Arvanitidis & Lefteri H. Tsoukalas, 2022. "Error Compensation Enhanced Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 15(4), pages 1-21, February.
- Jiang, Weiheng & Wu, Xiaogang & Gong, Yi & Yu, Wanxin & Zhong, Xinhui, 2020. "Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption," Energy, Elsevier, vol. 193(C).
- Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
- Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yao, Baofeng & Wang, Yan, 2022. "An outlier removal and feature dimensionality reduction framework with unsupervised learning and information theory intervention for organic Rankine cycle (ORC)," Energy, Elsevier, vol. 254(PB).
- Zhongfei Li & Kai Gan & Shaolong Sun & Shouyang Wang, 2023. "A new PM2.5 concentration forecasting system based on AdaBoost‐ensemble system with deep learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 154-175, January.
- Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
- Yang, Haolin & Schell, Kristen R., 2021. "Real-time electricity price forecasting of wind farms with deep neural network transfer learning and hybrid datasets," Applied Energy, Elsevier, vol. 299(C).
- Marek Vochozka & Jaromir Vrbka & Petr Suler, 2020. "Bankruptcy or Success? The Effective Prediction of a Company’s Financial Development Using LSTM," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
- Mira Watermeyer & Thomas Mobius & Oliver Grothe & Felix Musgens, 2023. "A hybrid model for day-ahead electricity price forecasting: Combining fundamental and stochastic modelling," Papers 2304.09336, arXiv.org.
- Chai, Shanglei & Li, Qiang & Abedin, Mohammad Zoynul & Lucey, Brian M., 2024. "Forecasting electricity prices from the state-of-the-art modeling technology and the price determinant perspectives," Research in International Business and Finance, Elsevier, vol. 67(PA).
- Guodong Wu & Jun Zhang & Heru Xue, 2023. "Long-Term Prediction of Hydrometeorological Time Series Using a PSO-Based Combined Model Composed of EEMD and LSTM," Sustainability, MDPI, vol. 15(17), pages 1-17, September.
- Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
- Jong-Hyun Lee & In-Soo Lee, 2021. "Lithium Battery SOH Monitoring and an SOC Estimation Algorithm Based on the SOH Result," Energies, MDPI, vol. 14(15), pages 1-16, July.
- Liu, Kailei & Cheng, Jinhua & Yi, Jiahui, 2022. "Copper price forecasted by hybrid neural network with Bayesian Optimization and wavelet transform," Resources Policy, Elsevier, vol. 75(C).
- Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
- Li, Wei & Becker, Denis Mike, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Energy, Elsevier, vol. 237(C).
- Li, Chuang & Li, Guojie & Wang, Keyou & Han, Bei, 2022. "A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems," Energy, Elsevier, vol. 259(C).
- Liu, Luyao & Bai, Feifei & Su, Chenyu & Ma, Cuiping & Yan, Ruifeng & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2022. "Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model," Energy, Elsevier, vol. 247(C).
- Gabrielli, Paolo & Wüthrich, Moritz & Blume, Steffen & Sansavini, Giovanni, 2022. "Data-driven modeling for long-term electricity price forecasting," Energy, Elsevier, vol. 244(PB).
- Pourghorban, Mojtaba & Mamipour, Siab, 2020. "Modeling and Forecasting the Electricity Price in Iran Using Wavelet-Based GARCH Model," MPRA Paper 115042, University Library of Munich, Germany.
- Zhang, Li & Gao, Yan & Zhu, Hongbo & Tao, Li, 2022. "Bi-level stochastic real-time pricing model in multi-energy generation system: A reinforcement learning approach," Energy, Elsevier, vol. 239(PA).
- Noura Metawa & Mohamemd I. Alghamdi & Ibrahim M. El-Hasnony & Mohamed Elhoseny, 2021. "Return Rate Prediction in Blockchain Financial Products Using Deep Learning," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
- Fang Guo & Shangyun Deng & Weijia Zheng & An Wen & Jinfeng Du & Guangshan Huang & Ruiyang Wang, 2022. "Short-Term Electricity Price Forecasting Based on the Two-Layer VMD Decomposition Technique and SSA-LSTM," Energies, MDPI, vol. 15(22), pages 1-20, November.
- Siti Nurfadilah Binti Jaini & Deug-Woo Lee & Seung-Jun Lee & Mi-Ru Kim & Gil-Ho Son, 2021. "Indirect tool monitoring in drilling based on gap sensor signal and multilayer perceptron feed forward neural network," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1605-1619, August.
- Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Wang, Shaomin & Wang, Shouxiang & Chen, Haiwen & Gu, Qiang, 2020. "Multi-energy load forecasting for regional integrated energy systems considering temporal dynamic and coupling characteristics," Energy, Elsevier, vol. 195(C).
- Yan Guo & Wei Tang & Guanghua Hou & Fei Pan & Yubo Wang & Wei Wang, 2021. "Research on Precipitation Forecast Based on LSTM–CP Combined Model," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
- Lin, Jianing & Bao, Minglei & Liang, Ziyang & Sang, Maosheng & Ding, Yi, 2022. "Spatio-temporal evaluation of electricity price risk considering multiple uncertainties under extreme cold weather," Applied Energy, Elsevier, vol. 328(C).
- Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Sharma, Ekta & Salcedo-Sanz, Sancho & Barua, Prabal Datta & Rajendra Acharya, U., 2024. "Half-hourly electricity price prediction with a hybrid convolution neural network-random vector functional link deep learning approach," Applied Energy, Elsevier, vol. 374(C).
- Huixin Liu & Xiaodong Shen & Xisheng Tang & Junyong Liu, 2023. "Day-Ahead Electricity Price Probabilistic Forecasting Based on SHAP Feature Selection and LSTNet Quantile Regression," Energies, MDPI, vol. 16(13), pages 1-17, July.
- Nazila Pourhaji & Mohammad Asadpour & Ali Ahmadian & Ali Elkamel, 2022. "The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
- Heidarpanah, Mohammadreza & Hooshyaripor, Farhad & Fazeli, Meysam, 2023. "Daily electricity price forecasting using artificial intelligence models in the Iranian electricity market," Energy, Elsevier, vol. 263(PE).
- Ma, Shuaiyin & Zhang, Yingfeng & Lv, Jingxiang & Ge, Yuntian & Yang, Haidong & Li, Lin, 2020. "Big data driven predictive production planning for energy-intensive manufacturing industries," Energy, Elsevier, vol. 211(C).
- Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).
- Liu, Gang & Wang, Kun & Hao, Xiaochen & Zhang, Zhipeng & Zhao, Yantao & Xu, Qingquan, 2022. "SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system," Energy, Elsevier, vol. 241(C).
- Singh, Priyanka & Kottath, Rahul, 2022. "Influencer-defaulter mutation-based optimization algorithms for predicting electricity prices," Utilities Policy, Elsevier, vol. 79(C).
- Rodrigo A. de Marcos & Derek W. Bunn & Antonio Bello & Javier Reneses, 2020. "Short-Term Electricity Price Forecasting with Recurrent Regimes and Structural Breaks," Energies, MDPI, vol. 13(20), pages 1-14, October.
- Shaokun He & Lei Gu & Jing Tian & Lele Deng & Jiabo Yin & Zhen Liao & Ziyue Zeng & Youjiang Shen & Yu Hui, 2021. "Machine Learning Improvement of Streamflow Simulation by Utilizing Remote Sensing Data and Potential Application in Guiding Reservoir Operation," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
- Shao, Zhen & Yang, Yudie & Zheng, Qingru & Zhou, Kaile & Liu, Chen & Yang, Shanlin, 2022. "A pattern classification methodology for interval forecasts of short-term electricity prices based on hybrid deep neural networks: A comparative analysis," Applied Energy, Elsevier, vol. 327(C).